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Abstract 

This paper addresses the design of an observer based adaptive neural controller for a class of 

strict-feedback nonlinear uncertain systems subject to input delay, saturation and unknown 

direction.  The input delay has been handled using of an integral compensator term in the 

controller design. A neural network observer has been developed to estimate the unmeasured 

states. In the observer design, the Lipschitz condition has been relaxed. To solve the problem 

of unknown control directions, the Nussbaum gain function has been applied in the 

backstepping controller design. “The explosion of complexity” occurred in the traditional 

backstepping technique has been avoided utilizing the dynamic surfaces control (DSC) 

technique and the designed controller is singularity free. It has been shown that all closed-

loop signals are semi-globally uniformly ultimately bounded (SGUUB) and the output 

tracking error converges to a small neighborhood of the origin by choosing the design 

parameters appropriately. The numerical examples illustrate the effectiveness of the proposed 

control scheme. 

Keywords: Adaptive neural network; Dynamic surface control; Input delay; Input saturation; Neural 

network observer; Unknown control direction. 
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1. Introduction  

   During the past decades, control design of nonlinear systems has attracted numerous 

researchers’ interests. Adaptive control based on the backstepping technique is one of 

the most common strategies for a large class of nonlinear systems [40]. Nevertheless, 

the most common drawback of backstepping technique is “the explosion of 

complexity”, resulting from differentiating the virtual controllers repetitively. 

Particularly, as order of the system increases, the complexity grows extremely [29]. 

This problem can be solved using the DSC technique [19, 20, 22, 36, 38, 49]; 

however, in the case of model mismatch, the controller design can be much more 

difficult. To deal with this problem, neural network (NN) and fuzzy logic systems 

(FLS) are used to approximate the unknown system dynamics [6]. In [8, 18, 19, 30, 

31, 33, 37, 39, 46], adaptive intelligent output feedback controllers have been 

proposed for the nonlinear strict-feedback systems. In [2], the sliding-mode control of 

nonlinear uncertain systems with unmolded actuator dynamics has been considered. 

Input time delay is frequently encountered in practical systems such as hydraulic 

systems and chemical processes. Input delay can lead to instability of the closed-loop 

system and degradation of the controller performance. In [45, 50], an adaptive fuzzy 

feedback controller design for nonlinear single-input-single-output (SISO) systems 

with input delay has been addressed. In [17], an adaptive fuzzy tracking controller for 

nonlinear systems with input delay has been designed utilizing the Pade 

approximation. Zhu et al. [51], extended this approach to control the multi-input-

multi-output (MIMO) nonlinear systems with input delay. 

In most practical control applications, usually some of the states are unavailable for 

measurement and the system dynamics are not completely known. In such cases, the 

NN or FLS observers can be used to estimate the unmeasured states of the systems 

with unknown dynamics [32]. Adaptive fuzzy observer for control of SISO nonlinear 

systems has been proposed in [16, 35, 21]. In [7], design of an adaptive NN controller 

for the non-strict-feedback nonlinear systems in the absence of full state 

measurements has been addressed. In most observer designs, the Lipschitz condition 

for the unknown nonlinear functions describing the system dynamics should be 
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satisfied. The stability analysis can be independent of the Lipschitz condition if fuzzy 

logic systems or neural networks are used in the design of adaptive observers [42]. 

Control of many industrial systems is faced with input constraints such as dead 

zone, backlash, or input saturation. Among these system input nonlinearities, input 

saturation is one of the most important constraints which severely restricts the system 

performance and can lead to instability [21]. In [48], an augmented system which has 

the same order as the nonlinear system, is incorporated in the controller design to 

compensate the effect of input saturation. An innovative approach for design of a 

robust adaptive controller for uncertain nonlinear systems in the presence of input 

saturation and external disturbances has been proposed in  [25, 41]. 

In designing the adaptive neural network controllers, control singularity problem 

might occur. If the system dynamics are not known, these dynamics should be 

estimated. When the estimated values of unknown dynamics approach zero, controller 

singularity can occur [27]. To deal with this problem, some approaches have been 

proposed in the literature namely; the projection algorithm [10], the integral Lyapunov 

function method [47], the coordinate transformation method [15], and the direct 

adaptive controller technique [12]. In this work a novel approach has been proposed to 

avoid the controller singularity problem. 

Additionally, in some control applications, the control directions are not known. 

When there is no a priori knowledge of the virtual control coefficients, controller 

design becomes much more difficult. This problem has been solved using different 

approaches such as utilizing the Nussbaum function [29, 34], estimating the unknown 

parameters including the unknown control direction [14], and using the correction-

vector method [5]. The Nussbaum gain function has been used in the design of 

adaptive controllers for nonlinear systems with unknown control directions in [11, 13, 

29]. 

Some of the aforementioned restrictions are considered by other researchers. For 

example, in [21, 23] an adaptive fuzzy output feedback controller for nonlinear 

systems in the presence of input saturation has been proposed. In another work [9], an 

observer-based adaptive NN controller is proposed for a class of uncertain nonlinear 
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systems in the presence of input saturation. In these works, it has been assumed that 

the control directions are known a priori which is not true in many control 

applications. In [29], an adaptive neural network controller is designed for a class of 

uncertain nonlinear strict-feedback systems with unknown control directions in the 

presence of input saturation. In the mentioned work, the authors assumed that all 

states are available for measurement which is not a realistic assumption from a 

practical point of view. In [1], an observer-based adaptive fuzzy output feedback 

controller for a class of nonlinear system with unknown control directions and input 

saturation has been proposed, but the input delay and “explosion of complexity”, 

occurring in the conventional backstepping controller design, are not taken into 

account.  

To the best of authors’ knowledge, there is no published work that considers 

simultaneously all of the aforementioned restrictions, i.e. unmeasured states, input 

saturation, input delay, controller singularity problem and unknown control directions 

for a class of uncertain SISO nonlinear systems. In this work, a controller for such 

systems has been proposed. In addition “the explosion of complexity” which occurs in 

the traditional backstepping control strategy has been avoided using the dynamic 

surfaces control technique. 

The main contributions of the present work are summarized below. 

1- In the development of the proposed control scheme, the Lipschitz condition 

which is a restrictive assumption in the design of the NN adaptive observer has 

been relaxed, while this assumption has been made in several related works 

[21, 50]. 

2-  The proposed method for handling the singularity problem, avoids the 

complexities in stability analysis presented in [47]. Additionally, compared to 

the approaches proposed in [11, 13, 29], the presented method is simpler and 

depends only on one Nussbaum Nussbaum function which leads to less 

oscillation in the control action. 
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3- Through the DSC technique, "the explosion of complexity" occurring in the 

conventional backstepping controller design has been avoided. This advantage 

becomes more highlighted when the uncertain nonlinear system has high order 

dynamics. 

4- The proposed method is able to tackle the effect of time-varying input delay, 

while in [45, 50], it has been assumed that the input delay is constant. 

5- Using the Nussbaum gain function is one of the most common approaches for 

handling the unknown control directions, but the control action becomes 

oscillatory as the number of Nussbaum functions increases. In the present 

study, by utilizing a change of coordinate, only one Nussbaum function has 

been used which leads to fewer oscillations in the control action.  

6- Stability of the closed-loop system and boundedness of all signals have been 

established in the presence of input saturation, observer dynamics and input 

delay. 

The paper is organized as follows. The problem formulation and preliminaries are 

presented in Section 2. In Section 3, design of the Luenberger-like observer is 

addressed. Design of the NN adaptive controller based on the backstepping technique 

and stability analysis are presented in Section 4. Effectiveness of the proposed scheme 

has been demonstrated via simulation study in Section 5. Conclusion is drawn in 

Section ‎6.  Finally, the future works are discussed in Section 7. 

2. Problem formulation and preliminaries 

2.1 Control problem  

Consider the following uncertain nonlinear strict feedback system with time-

varying input delay, unknown control directions subject to external disturbances as 

given below 
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{

 ̇           (  )    ( )              

 ̇    (  ) (   )    (  )    ( )             
                                                                               

  (1) 

where     ,          -
     are the state variables and it is assumed that for 

   ,    are unavailable.            are the unknown control coefficients. 

  ( )       and   ( ) are the unknown nonlinear smooth functions.   ( )   

    are the unknown bounded disturbances and     is the input time delay.     

and     are output and input of the system, respectively. Due to input saturation, 

the system input,  , is related to the designed control signal     as given below  

 ( )     ( )  {
      ( (   ))    | (   )|    

 (   )                      | (   )|    

 (2) 

where    ( ) and     ( ) denote saturation and unit sign function, respectively.    

is the known magnitude of the saturation limit. The control objective is designing an 

adaptive controller for the above nonlinear system in the presence of the 

aforementioned restrictions. 

Remark 1.   ( ) is a nonzero function with unknown sign which can be expressed as 

follows 

  (  )   (  )     (3) 

 where  (  )     .  (  )/ and         .  (  )/. Utilizing the above 

equation and the following transformation are two important steps in simplifying the 

controller design and minimizing the number of the Nussbaum functions used for the 

design of the controller. Existence of the unknown control coefficients,          , 

in the system (1), makes the controller design much more difficult. In order to 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

simplify the controller design, the approach proposed in [44] has been used. Define 

the new state variables    
  

∏   
 
   

      , the new smooth functions   (  )  

  (  )

∏   
 
   

       and the new disturbances   ( )  
  ( )

∏   
 
   

      . The first state 

variable,    , the first smooth function,   (  ), and the first disturbance,   ( ), remain 

unchanged. For notation consistency, they are presented by   ,   (  ) and   ( ), 

respectively. By using the above transformation and Remark 1, system (1) converts to  

{
 
 

 
   ̇         (  )    ( )                             

 ̇         (   )    ( )          

  ̇   (  ) (   )    (   )    ( )          

                                                                           

  (4) 

where    ∏   
 
    is defined as a new control coefficient. The above transformed 

dynamical system has only one unknown control coefficient which can be handled by 

a Nussbaum function. To design an adaptive NN controller, the following assumptions 

are made. 

Assumption 1. The desired reference signal,   , and its derivative are known and 

bounded.  

Assumption  2. There are known positive parameters  
 
       such that 

inequalities   |  |   
 
         are satisfied. 

Assumption 3. The positive time-varying delay,  ( ), and its derivative are known. 

Assumption 4. The unknown new disturbances,   ( )      , are bounded and 

there are positive constants,   
 , such that |  ( )|    

       . 
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Remark 2. Regarding the above assumptions, the following points should be 

considered. In most of control applications, the reference signal is known and 

therefore the first assumption is not restrictive. Also for the real systems, the input 

directions and disturbances are bounded; consequently, their upper bounds should 

exit. It must be also noted that for implementation of the proposed control scheme, 

these bounds are not required. Therefore the second and fourth assumptions are not 

restrictive either. Regarding the third assumption, it should be mentioned that in most 

process control applications, the source of delay is due to liquid transfer through a 

pipe. For such cases, the time delay can be calculated by dividing the pipe volume by 

the liquid flow rate. Therefore the fourth assumption is not restrictive for many 

practical control applications. 

Definition 1 [13, 28]. To compensate the effect of the unknown control direction, 

consider the continuous function  ( ), called the Nussbaum gain function, which has 

the following properties: 

{
          

 

 
∫  ( )     
 

 
 

          
 

 
∫  ( )     
 

 
  
  (5) 

These integral equations indicate that the Nussbaum functions have infinite 

frequencies of switching sign. According to [29], there are many functions that satisfy 

equation (5). Continuous functions      ( ) and      ( ) are good examples of the 

Nussbaum gain function. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Lemma 1 [11]. Let  ( ) and  ( ) be smooth functions defined on [    ) with  ( )  

 ,    [    ) and  ( ) be an even smooth and continuous Nussbaum function. If the 

following inequality holds: 

 ( )     ∫ (  ( )   ) ̇      [    )
 

 
  (6) 

where   is a nonzero constant and    represents a positive constant, then  ( ),  ( ) 

and ∫ (  ( )   )
 

 
 ̇   must be bounded on [    ). 

2.2 Neural Network 

In control engineering, the radial basis function neural network (RBFNN) is usually 

used as a tool for estimating any smooth nonlinear function over a compact set. In this 

paper, the following RBFNN [26] is used to approximate the continuous function 

 ( )      over a compact set as follows: 

   ( )     ( )  (7) 

where        and   ,          -
    are the inputs of NN and the 

weight vector, respectively. Parameter     denotes the number of the NN nodes. 

The elements of the regressor vector  ( )  ,  ( )   ( )     ( )-
 denoted by 

  ( ), are usually chosen to be Gaussian functions in the following form:  

  ( )     [
 (    )

 
(    )

  
 ]         (8) 

where   
 
 ,             -  are the centers of the receptive fields and           

are the width of Gaussian functions. It has been proved that the RBFNN is an 

approximator over a compact set       with any degree of accuracy. The function 

approximation can be written as 
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 ( )      ( )   ( )           (9) 

where  ( ) is the NN approximation error and    is given by 

             *      | ( )     ( )|+  (10) 

Lemma 2. There exists an ideal constant vector   such that  | |     for all     

[19].  

The RBFNN given by (9) is used to approximate the following nonlinear functions: 

{
 
 

 
   (   )  (    )     (  )    

    (   )    (   )

  (   )    
    (   )    (   )                                    

 (   )    
    (   )    (   )                                              

                                                                       

  (11) 

Since          are unmeasured, equation (11) is not applicable for approximating 

the nonlinear functions  ̅ ( ),  ( ),   ( )      . To solve this problem, the 

following approximations are used: 

{

(    )     (  )   ̂ ( ̂  )            

  (   )   ̂ ( ̂  )                          

 (   ) (   )   ̂( ̂  ) (   )       

  

        

(12) 

where           and    are defined as 

{

      (   )   ̂ ( ̂  )                       

      (   )   ̂ ( ̂  )          

   ( (   )   ̂( ̂  )) (   ( ))

      (13) 

and 

{

 ̂ ( ̂  )    
   ( ̂  )                     

 ̂ ( ̂  )    
   ( ̂  )            

 ̂( ̂  )    
   ( ̂  )                       

  (14) 
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Applying equations (11)-(14), the unknown smooth functions   ( ),   ( ) and 

 ( )       can be estimated. Utilizing (11)-(14), the transformed system (4) can 

be rewritten as  

{
  
 

  
   ̇      ̂ ( ̂  )    

    (   )    (  )   
   ( ̂  )    ( )                             

  
̇         ̂( ̂  )    

    (   )    (   )    
   ( ̂  )    ( )        

  ̇  .  
    (   )    (   )/  (   )   ̂ ( ̂ )    

    (   )                            

      
   ( ̂  )   ̂( ̂  ) (   )   

   ( ̂  ) (   )     (   )    ( )   

                                                                                                                                             

  DisplayText cannot span more than one line! 

The above form of the system will be used to obtain the error dynamics of the 

adaptive NN observer. 

 

3. Adaptive NN observer design 

    As mentioned before, the state variables          of system (4) are 

unavailable. In this section, an adaptive NN observer is designed to estimate the states 

of system (4). The structure of the adaptive NN observer is given below 

{
 

  ̂ 
̇   ̂   ̂̅ ( ̂  )    (   ̂ )                                 

 ̂ 
̇   ̂     ̂ ( ̂  )    (   ̂ )              

 ̂ 
̇   ̂( ̂  ) (   )   ̂ ( ̂  )    (   ̂ )        

  (16) 

where  ̂  [ ̂   ̂     ̂ ]
 
       are the estimated states vectors.  ̂ ( ̂  )   

    and  ̂( ̂ ) are defined by (14). The positive gains,          are chosen 

such that the polynomial  ( )        
               is Hurwitz. 

Defining the state observation error vector as      ̂  ,          -
 , and 
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substituting equations (14)-(16) into time derivate of  the observer error, results in the 

observation error dynamics as given below 

{
 
 

 
 
  ̇       

    (   )    (   )    
   ( ̂  )         ( )                       

  ̇         
    (  )    (   )    

   ( ̂ )          ( )        

  ̇  .  
    (  )    

   ( ̂  )/  (   )   
    (  )    

   ( ̂ )      

   (   ) (   )         ( )                                                                   

  (17) 

The above equation can be expressed in the matrix form. By defining   ̃      , 

and   (     ̂  )    (   )    ( ̂  ), the observation error dynamic can be written as 

 ̇         (   ̂)    
   .   ̂  (   )/   ̃  ( ̂)           (18) 

where 

  [

   

     

    

]

   

    [  (   )     (   ) ]
 
    ,  ( )     ( ) -

    

  [     ̃ 
   ( ̂  ) (   )]

   

 
   [      (   ) (   )]

   

 
   

    (   ̂)  [  
    (     ̂  )   

    (     ̂  )     
    (     ̂  )]

 
    

 ̃  ( ̂)  [ ̃ 
   ( ̂  )  ̃ 

   ( ̂  )    ̃ 
   ( ̂  ) ]

 
  

  
   .     ̂    (   )/  [      

    (     ̂  ) (   )]
   

 
   

It should be noted that to derive the observation error dynamic (18), the following 

equalities have been used: 

{

  
    (   )    

   ( ̂ )    
    (     ̂  )   ̃ 

   ( ̂  )               

  
    (   )    

   ( ̂ )    
    (     ̂  )   ̃ 

   ( ̂  )      

  
    (   )    

   ( ̂  )    
    (     ̂  )   ̃ 

   ( ̂  )           

  (19) 
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Remark 3. Using the approach proposed in [1] and properties of the Gaussian 

function, we have the following inequalities which will be used later in the stability 

analysis of the observer: 

{
  

 (     ̂  )  (     ̂  )                 

  
 (    ̂  )  (     ̂  )                         

  (20) 

where          and    are numbers of the network neurons in approximating the 

 th nonlinear function   ( ) and  ( ), respectively. The above inequalities imply that 

each element of   (     ̂  )       and   (     ̂  ) are bounded and their 

maximum values are one. It should be noted that inequality (20) is also valid for 

regressor vectors   ( )       and   ( ). By using inequality (20) and Remark 3, 

the Lipschitz condition can be relaxed in the controller design. 

To analyze the stability of the error dynamic (18), consider the following Lyapunov 

function: 

          (21) 

where     is a symmetric matrix. By substituting (18) into time derivative of the 

above Lyapunov function one gets 

 ̇    (      )      . ̃  ( ̂)    
   (   ̂  (   ))  

    (   ̂)/      (       )  

(22) 

To proceed the stability analysis of the adaptive NN observer, the second and third 

terms in right hand side of (22) need to be separated from the estimation error vector 
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  ,          -
 . Using Remark 3, Lemma 2, Assumption 4 and Young's 

inequality, the following inequality can be obtained: 

    .    (   ̂)    
   (   ̂  (   ))   ̃  ( ̂)/      (  

     )        .
 

 
   /      (  

    
   ̃ 

  ̃ )  

∑   (  
    

   ̃ 
  ̃ )

 
    ‖  ‖    ‖  

 ‖  ‖  ‖   

 

(23) 

where vectors    and    are defined as    ,  
      

 - and    ,  
      

 - . 

Using inequality (23) in (22) yields 

 ̇    .        .
 

 
   /   /       (24) 

where     is defined as 

   ∑   (  
   

     
   ̃ 

  ̃ )      (  
    

   ̃ 
  ̃ )  ‖  ‖  

  ‖  
 ‖  ‖  ‖   

(25) 

Inequality (24) will be used in the stability analysis of the closed-loop system in the 

presence of observer dynamics. 

4. Adaptive controller design 

    In this section, the procedure of designing an adaptive output feedback NN 

controller based on the backstepping technique for system (4) is presented. Designing 

the adaptive NN controller includes n-steps. The following change of coordinate is 

introduced: 
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{

                                                              

    ̂                                       

    ̂        ̂( ̂  ) ∫  ( )  
 

   ( )

  (26) 

where           and    are the control surfaces and the desired trajectory, 

respectively. Variable   is the output of a first order differential equation which will 

be defined in the final step. The integral term appeared in the last control surface has 

been considered to compensate the effect of input delay. Variables          are 

the outputs of the first order filters with adjustable time constants          as 

given below 

 ̇               ( )      ( )            (27) 

Using the above filters, computational burden in calculating the virtual control 

signals,            and input signal,  , will be decreased compared to the load 

required for the traditional backstepping technique. To proceed the DSC controller 

design, the variables          are defined as 

                         (28) 

Using (27), the following equalities for time derivatives of      can be obtained: 

 ̇     ̇   ̇     
    

  
                  (29) 

According to [39],       ̇          are continuous functions. Equations (28) 

and (29) are used in the stability analysis of the closed-loop system and finding the 

appropriate intervals for time constants         .  
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Step 1: By taking time derivative of the first control surface (26) and substituting for 

the first state of system (4), one has 

  ̇         (  )    ( )    ̇   (30) 

Because the nonlinear function   (  ) is unknown, it is approximated with a NN as 

given below 

  (  )     
     (  )     (  )  (31) 

 Using (26), (28) and (31),  ̇  can be written as 

  ̇    (           )     
     (  )     (  )       ̇   (32) 

where        ̂ . 

The following Lyapunov function has been considered for the first step: 

      
 

 
  
  

 

 
  
  

 

   
 ̃ 

  ̃  
 

    
 ̃  

  ̃    (33) 

where     and    are the positive design constants. By substituting (24), (29) and (32) 

into time derivative of the above Lyapunov function and adding and subtracting term 

 ̃ 
   ( ̂ )   we obtain 

 ̇    .        .
 

 
   /   /   

 

  
 ̃ 

 ( ̇      ( ̂  )  )  

  .  (        )   ̇  (   
   ̃  

 )   (  )   ̃ 
   ( ̂  )/  

 

   
 ̃  

  ̇     .
  

  
   /    ( 

       (  )    )                          

 

 

 

(34) 

Using Assumption  2, Remark 3, Lemma 2, (20) and Young's inequality, the following 

inequalities are obtained: 
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  (    )

  
. 

 
/
 

 
   (35) 

    ̃ 
   ( ̂  )    

    
 ̃ 

  ̃ 

 
  (36) 

  ( 
       (  )    )    (     )     

  
 
  

 
    

‖   
 ‖

 

 
 

‖  ‖ 

 
 

  
 

 
   

   

 

(37) 

Substituting inequalities (35)-(37) into (34) yields 

 ̇    (        .
 

 
   /    

 
  

 
 )     

 .
 

  
 

 

 
/  

  (            
    (  )   ̇ )  (    )

  
 

  
 ̃ 

 ( ̇      ( ̂  )  )  

 

   
 ̃  

 ( ̇         (  )  )    
  

 
  

 
   

 ̃ 
  ̃ 

 
 

‖   
 ‖

 

 
 

‖  ‖ 

 
     

 

 

 

(38) 

where  
 
 ∏  

 
 
   . Based on Assumption  2,  

 
 is positive and known. It should be 

noted that to derive (38),  ̃ 
̇    ̇  and  ̃  

̇    ̇   have been used. For the first 

step, the following virtual control signal   , tuning function  , and adaptation laws for 

       are proposed: 

    ( )(            
    (  )   ̇ )       (39) 

 ̇  
  

 
(            

    (  )   ̇ )     (40) 

 ̇        ( ̂ )   (     
 )         (41) 

 ̇           (  )   (       
 )                    (42) 
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where terms  (     
 )        are called sigma-modification which make the 

adaptive laws robust in the presence of NN approximation error [3, 10].   ,   and   

are positive design constants.    
  and   

  are strictly positive design vectors. 

Substituting the virtual control signal (39), (40), and adaptation laws (41), (42) into 

time derivative of     gives 

 ̇    (        .
 

 
   /    

 
  

 
 )    (   ( )   ) ̇  

    
  (    )

  
 

   
 ̃  

 (       
 )  

 

  
 ̃ 

 (     
 )  

  
 .

 

  
 

 

 
/    

 ̃ 
  ̃ 

 
   

      

 

 

(43) 

where 

      
‖   

 ‖
 

 
 

‖  ‖ 

 
 

 
  

 
  (44) 

Step 2: Using the adaptive NN observer (16), (26)  and (45), time derivative of the 

second control surface can be written as 

  ̇             
   ( ̂ )    (   ̂ )   ̇   (46) 

For the second step, the following Lyapunov function has been chosen: 

      
 

 
  
  

 

 
  
  

 

   
 ̃ 

  ̃   (47) 

where    is a positive design parameter. Substituting (29), (43) and  ̇   
  

  
    

 into time derivative of    gives 
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 )    (   ( )   ) ̇  

    
  

 

  
 ̃ 

 ( ̇      ( ̂  )  )    (    
           

  
   ( ̂  )   ̃ 

   ( ̂  )    (   ̂ )   ̇ )  
 

  
 ̃ 

 (     
 )  

 

   
 ̃  

 (       
 )    

 .
 

  
 

 

 
/    .

   

  
   /   

 ̃ 
  ̃ 

 
   

      

 

 

 

 

(48) 

Note that to derive the inequality (48), term  ̃ 
   ( ̂ )   is added and subtracted. 

Using Young's inequality and Remark 3 we have 

        ̃ 
   ( ̂  )          

  
  
 

 
   

 ̃ 
   ̃

 
   

   (49) 

 Substituting (49) into (48) yields 

 ̇    (        .
 

 
   /    

 
  

 
 )    (   ( )   ) ̇  

     
    (    

           
   ( ̂  )    (   ̂ )   ̇ )  

     
 

  
 ̃ 

 (  
̇      ( ̂  )  )  

 

  
 ̃ 

 (     
 )  

 

   
 ̃  

 (    

   
 )  ∑   

 (
 

    
 

 

 
) 

    ∑   
 ̃ 

  ̃ 

 

 
    ∑   

  
        

 

 

 

(50) 

Consider the following second virtual control signal and adaptation law as 

                 
    

   ( ̂  )    (   ̂ )   ̇     (51) 

 ̇        ( ̂  )   (     
 )  (52) 

where    and   are the positive design constants and   
  is a strictly positive design 

vector. Using virtual control (51) and adaptation law (52), (50) can be rewritten as 
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 ̇    (        .
 

 
   /    

 
  

 
 )       (   ( )   ) ̇  

∑   
  

   (
 

    
 

 

 
)  ∑     

  
         

 

   
 ̃  

 (       
 )  

∑
 

  
 ̃ 

 (     
 ) 

    ∑   
 ̃ 

  ̃ 

 

 
    ∑   

  
        

 

 

(53) 

Step          : Using the adaptive NN observer (16), control surfaces (26) and 

          , time derivative of the  th control surface can be written as: 

                
   ( ̂  )    (   ̂ )  ̇   (54) 

For this step, consider the following Lyapunov function: 

        
 

 
  
  

 

 
  
  

 

   
 ̃ 

  ̃   (55) 

where    is a positive design constant. From the previous step, we have the following 

inequality for  ̇   :  

 ̇      (        .
 

 
   /    

 
  

 
 )     (   ( )   ) ̇  

∑     
    

    
 

   
 ̃  

 (       
 )  ∑

 

  
 ̃ 

 (     
 )   

    

∑   
    

   (
 

    
 

 

 
)         ∑   

 ̃ 
  ̃ 

 

   
    ∑   

    
        

 

 

(56) 

Substituting  ̇   , (29) and (54) into the time derivative of    and adding and 

subtracting term  ̃ 
   ( ̂ )   yields 

 ̇    (        .
 

 
   /    

 
  

 
 )     (   ( )   ) ̇         

∑     
  ∑   

  
   (

 

    
 

 

 
)   

    
 

  
 ̃ 

 . ̇        ( ̂ )/  
 

   
 ̃  

 (    
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 )  ∑

 

  
 ̃ 

 (     
 )   

      . 
  

    
   /    .           

  
   ( ̂  )    (   ̂ )   ̇   ̃ 

   ( ̂  )/  ∑   
 ̃ 

  ̃ 

 

 
    ∑   

  
        

 

 

(57) 

Utilizing Remark 3 and Young’s inequality, the following inequality can obtained:  

             ̃ 
   ( ̂  )     

  
  
 

 
   

 ̃ 
  ̃ 

 
   

   (58) 

Substituting the above inequality into (57) gives 

 ̇    (        .
 

 
   /    

 
  

 
 )     (   ( )   ) ̇  

∑   
  

    ∑     
    

    ∑
 

  
 ̃ 

 (     
 )   

    
 

   
 ̃  

 (       
 )  

 

  
 ̃ 

 . ̇        ( ̂  )/    (              
   ( ̂  )    (   ̂ )  

 ̇ )         ∑   
  

   (
 

    
 

 

 
)  ∑   

 ̃ 
  ̃ 

 

 
        

 

 

 

(59) 

The following virtual control signal and adaptation law are proposed: 

                    
   ( ̂  )    (   ̂ )   ̇   (60) 

 ̇        ( ̂  )   (     
 )  (61) 

where            and   are positive design constants and   
          

are positive design vectors. By using virtual control (60) and adaptation law (61),  ̇  

can be rewritten as 

 ̇    (        .
 

 
   /    

 
  

 
 )     (   ( )   ) ̇  
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 (     
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 ̃  

 (       
 )  ∑     

  
           

∑   
  

   (
 

    
 

 

 
)  ∑   

 ̃ 
  ̃ 

 

 
    ∑   

  
        

(62) 

Step n: Similar to the approach proposed in [1], to handle the input nonlinearities and 

design a nonsingular controller, the following first order differential equation for the 

last step is considered: 

 ̇  
 

 ̂( ̂ )
 
  

(       
   ( )             ( )   ̇ )  

  | ̂( ̂  )|   ̂( ̂  )( ( )   ( ))   

 

(63) 

where    ( ) is given by 

  ( )    ̂( ̂  )        .  
 ̇   ( ̂  )/ ∫  ( )  

 

   ( )
  (64) 

 ,   and    are positive design constants. Term   
   ( ) in differential equation (63) 

is used to estimate the integral term appeared in time derivative of the  th control 

surface. By substituting the last state of observer (16) and differential equation (63) 

into time derivative of   , the following equation can be obtained: 

 ̇   ̂( ̂  )    
   ( )    ( )    ( )   | ̂( ̂  )|  

 ̂( ̂  ) ̇( ) (   )  
 

 ̂( ̂  )
 
  

(       
   ( )           

  ( )   ̇ )   ̇   

 

 

DisplayText cannot span more than one line! 

where  ̇( ) is time derivative of  ( ). Similar to the approach proposed in [12, 24, 43], 

in order to avoid the computational burden of complex terms arising from time 

derivative of    ( ̂ ) in (65), the following NN approximation is used: 
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.∑   
    (  ̂  )

  ̂  

 
    ̂  

̇ / ∫  ( )  
 

   ( )
   

    ( )    ( )  (66) 

where   0    ̂    ∫  ( )  
 

   ( )
1
 

is the input vector to construct the NN 

regressors. For the last step, the following Lyapunov function is proposed: 

        
 

 
  
  

 

   
 ̃ 

  ̃  
 

   
 ̃ 

  ̃  
 

   
 ̃ 

  ̃    (67) 

where   ,    and    are positive design constants. Using (65) and time derivative of 

     (obtained from (62) for      ) in time derivative of (67) and adding and 

subtracting term   . ̃ 
   ( ̂  )   ̃ 

   ( ̂  )/, leads to the following inequality: 

 ̇    (        .
 

 
   /    

 
  

 
 )     (   ( )   ) ̇  

∑   
    

   (
 

    
 

 

 
)  ∑   

    
    ∑     

    
    

 

  
 ̃ 

 . ̇        ( ̂  )/  

 

  
 ̃ 

 . ̇        ( ̂  )/  ∑
 

  
 ̃ 

 (     
 )   

      ( ̂( ̂ )  

 ̃ 
   . ̂

  
/   ̃ 

   . ̂
  
/    

   ( )    ( )         ( ))  

  
 

 ̂( ̂  )
 
  

(       
   ( )             ( )   ̇ )  

  ( ̂( ̂  ) ̇( ) (   )   | ̂( ̂  )|   ̇ )  
 

   
 ̃  

 (       
 )  

 

  
 ̃ 

 . ̇        ( )/  ∑   
 ̃ 

  ̃ 

 

 
        

 

 

 

 

 

(68) 

Applying Young's inequality, Remark 3, and Lemma 2 results in 

  .  ( )   ̃ 
   ( ̂  )   ̃ 

   ( ̂  )/     
    

 ̃ 
  ̃ 

 
   

 ̃ 
  ̃ 

 
 

‖  
 ‖ 

 
  

(69) 
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Using the above inequality in (68) gives 

 ̇    (        .
 

 
   /    

 
  

 
 )     (   ( )   ) ̇  

∑   
    

    ∑     
    

    ∑   
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 ̃ 

 (     
 )   

    

 

   
 ̃  

 (       
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 . ̇        ( ̂  )/  
 

  
 ̃ 

 . ̇  

      ( ̂  )/  
 

  
 ̃ 

 . ̇        ( )/    ( ̂( ̂  )    
   ( )       

      ( )   ̇ )    ( ̂( ̂  ) ̇( ) (   )   | ̂( ̂  )| )  

  
 

 ̂( ̂  )
 
  

(       
   ( )             ( )   ̇ )  

∑   
 ̃ 

  ̃ 

 

 
      

 ̃ 
  ̃ 

 
 

‖  
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(70) 

The following control signal and adaptation laws are proposed: 

   
 ̂( ̂ )

 ̂( ̂ )
 
  

(       
   ( )             ( )   ̇ )  

 ̇( ) (   )        . ̂( ̂  )/   

(71) 

 ̇        ( ̂  )   (     
 )  (72) 

 ̇        ( ̂  )   (     
 )              (73) 

 ̇        ( )   (     
 )  (74) 

where   
 ,   

  and   
  are strictly positive design vectors. Substituting (71) and (72) 

- (74) into (70) yields 

 ̇    (        .
 

 
   /    

 
  

 
 )    (   ( )   ) ̇   
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(75) 

In order to make the closed-loop system stable, a positive and symmetric matrix 

       is selected and the following algebraic Lyapunov equation is solved to 

obtain a positive systematic matrix   satisfying the following inequality: 

        .
 

 
   /    

 
  

 
      (76) 

According to [4], the above inequality has a feasible solution which can be obtained 

by using the interior-point method. Using (76) in (75) yields 

 ̇          (   ( )   ) ̇  ∑   
    

    ∑   
    

   (
 

    
 

 

 
)  

∑
 

  
 ̃ 

 (     
 ) 

    
 

   
 ̃  

 (       
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 (     
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 ̃ 

 (     
 )  ∑     

  
    ∑   

 ̃ 
  ̃ 

 

 
      

 ̃ 
  ̃ 

 
 

‖  
 ‖

 

 
     

 

 

(77) 

Theorem. Applying control law (71), virtual control signals (39), (51), (60), adaptive 

laws (41), (42), (52), (61), (72), (73), (74), and state observer (16) to system (1) under 

Assumption 1-4 and in the presence of input saturation and delay, guarantees semi-

globally uniformly ultimately boundedness of all closed-loop signals and the output 

tracking error converges to a small neighborhood of the origin. 

Proof. Using Young's inequality, the following inequalities can be obtained: 
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 ‖   (79) 
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 ‖   (80) 
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 ̃ 

  ̃  
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 ‖   (81) 

Substituting (25), (44) and (78)-(81) into (77) yields 
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(82) 

Definition 2. Similar to the approach proposed in [6] and considering boundedness of 

   and  ̇ , the compact sets      
.(∑   

 
   )         /

are introduced 

   {∑ ‖    ‖
  

    ∑   
  

    ∑     
  

    ∑
 ̃ 

  ̃ 

  

 
    

 ̃  
  ̃  

   
 

 ̃ 
  ̃ 

  
 

 ̃ 
  ̃ 

  
    }         

 

(83) 

where    denotes the positive constant for all initial conditions which satisfy the 

above inequality. Since    is a compact set for continuous functions    defined on 
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          then there exist positive constants        

    such that inequalities |  |             are satisfied. 

Using the above inequalities in (82),  ̇  can be written as 

 ̇        (   ( )   ) ̇     (84) 

where positive constants   and   are defined as 

     2
    ( )

    ( )
     .

 

    
  /     .

 

   
 .   

 

 
/   /     .
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(85) 
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(86) 

    ( ) and     ( ) denote the minimum eigenvalue of        and the maximum 

eigenvalue of        , respectively. Multiplying both sides of inequality (84) by 

   (   ) and integrating over range [    ], yields 

 

 
  
     

 

 
   ( )  ∫    (    ) (   ( )   ) ̇  

  

 
  (87) 

Using (87) and Lemma 1, we conclude that all closed-loop signals including the 

output tracking error and the state observation error vector are bounded. Additionally, 

according to Lemma 1, we have |∫    (    ) (   ( )   ) ̇  
  

 
|   , where   is a 

positive constant. Using this inequality and (87), we have 
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|  |  √ (  ( )       )  (88) 

From (88), it is clear that √ (  ( )       ) can be decreased by increasing  . 

Therefore the output tracking error,   , can be decreased by choosing the design 

parameter   appropriately. 

In what follows the steps required for designing the proposed controller and some 

guidelines for choosing the design parameters are provided. 

1)  Choose a positive vector   ,       -
  to make matrix   Hurwitz. 

2)  Select a positive symmetric matrix        and solve (76) to obtain the 

positive symmetric matrix       . 

3)  Construct the appropriate Neural Networks with Gaussian functions given by 

(8) to estimate  ̂ ( ̂ )      . 

4)  Select positive values for design parameters   ,    ,   ,   ,  ,     ,  ,  ,   

such that 
 

  
 

 

 
        ,                 and 

 

  
 .

 

 
 

   /   . 

Choosing large values for    and          decreases the control surface 

errors, |  |, and estimation error   , but results in an aggressive control action. In 

order to reduce the growth rate of   and avoid oscillations in the Nussbaum 

function, it is recommended to choose high values for  . Set each elements of 

design vectors    
 ,   

 ,   
 ,   

        to a positive constant. It is worth 
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mentioning that these fixed vectors do not have significant effects on the closed-

loop tracking performance. 

5. Simulation results 

In this section, two numerical examples are presented to verify the effectiveness of 

the proposed adaptive NN controller.  

Example1: Consider the SISO nonlinear system described by the following 

differential equations with unknown control direction and subjected to external 

disturbances: 

{

 ̇       
  

    
    ( )                              

 ̇  
  (   )

       (    )
      (   

 )    ( )

                                                                       

  (89) 

 

where    ,     -
     is the states vector.        and input time delay   is set 

to     . The unknown bounded disturbances   ( ) and   ( ) are selected to be 

      .
 

 
/ and        .

 

 
/, respectively. It is assumed that the second state variable 

is unavailable and       is considered as the upper bound of the input. The 

reference signal is set to       ( ) and   ( )  ,     -  is considered as the initial 

condition of the states vector. For estimating the nonlinear functions, the NN 

approximator,    
    (   ), with input vector     ,  - containing 4 nodes with 

centers        
(         ) and width           (         ) evenly spaced in 

,      - has been considered. To approximate the nonlinear functions   ( ),   ( ) 

and  ( ), three NNs,   
   (  )          with input vector    
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[    ̂ ]
 
containing 16 nodes with centers      

(         ) and width      
 

  (         ) evenly spaced in ,      -  ,      - are selected. Similarly, the 

NN   
   (  ) with input vector    0    ̂     ∫  ( )  

 

   
1
 

 containing 256 nodes 

with centers      (          ) and width         (          ) evenly spaced 

in ,      -  ,      -  ,      -  ,      -  is chosen.  

The observer for this example has been designed based on (16). Furthermore, the 

controller has been applied by utilizing (70). The virtual control signals are calculated 

by utilizing (39), (51), (60) and to update the unknown parameters adaptive laws (41), 

(42), (52), (61), (72), (73),and (74) have been used. 

The above mentioned equations for this example are provided below. 

Equation used for the observer is as follows:  

{
 ̂ 
̇   ̂    

   ( ̂ )    (   ̂ )                                

 ̂ 
̇    

   ( ̂ ) (   )    
   ( ̂ )    (   ̂ )

 

  

(90) 

Furthermore, the control action is given by  

   
.  

   ( ̂ )/

.  
   ( ̂ )/

 
  

.       
   ( )           

   ( ̂ )       

.  
 ̇   ( ̂ )/ ∫  ( )  

 

   
  ̇ /        .  

   ( ̂ )/  

 

(91) 

where    and    are obtained from the following equations: 

 ̇             ( )    ( ) (92) 

    ( )(            
    (  )   ̇ ) (93) 
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and    satisfies the following differential equation: 

 ̇  
  
 

(            
    (  )   ̇ ) (94) 

The corresponding adaptation laws are given by 

 ̇           (  )   (       
 ) 

(95) 

 ̇        ( ̂ )   (     
 ) 

(96) 

 ̇        ( ̂ )   (     
 ) 

(97) 

 ̇        ( ̂  )   (     
 ) 

(98) 

 ̇        ( )   (     
 ) 

(99) 

The design parameters are set to     ,     ,       ,      ,       , 

      ,       ,         ,        ,    ,       and each element of 

design vectors    
 ,    

 ,     
 ,    

  and    
  is fixed to 0.1. Observer design parameters 

are chosen to be              

The tracking performance of the proposed control scheme has been shown in Fig.  

1. As can be seen, the reference signal has been tracked quite well. The corresponding 

control action has been shown in Fig.  2. The system states and their estimates are 

shown in Figs. 3 and 4. Variations of the Nussbaum gain function and its argument are 

shown in Fig.  5. 
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Fig.  1. The system output and the reference signal. 

 

 

 

Fig.  2. The control signal and the system input. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

Fig.  3.   ( ) and its estimate. 

 

 

Fig.  4.   ( ) and its estimate. 
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Fig.  5. The Nussbaum gain function and its argument. 

Example 2: Consider the following two cascaded stirred isothermal reactors depicted 

in Fig.  6. It is assumed that the   order chemical reaction,       takes place in 

these reactors. The dynamical model of these continuous stirred tank reactors (CSTR) 

can be obtained via mass balance of species   as given below 

{
 
 

 
 

    ( )

  
 

  

  
   ( )  

  

  
   ( )        

 ( )  
 

  
  ( )       

    ( )

  
 

  

  
   (   )  

  

  
   ( )        

 ( )  
 

  
  ( )

     ( )                                                                                     

  (100) 

 

where    ( ) and    ( ) are the concentrations of species   in the first and second 

reactor, respectively. Constants   ,    and    are the flow rates of liquid streams as 

shown in Fig.  6.    and    are volumes of the two reactors and positive constants     

and     are the isothermal reaction coefficients of the first and second reactors, 

respectively. Variables   ( ) and   ( ) are unmeasured inlet mole flow to the first 
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and second reactors and considered as external disturbances.    ( ) is the inlet 

concentration of species   into the first reactor and considered as the manipulated 

variable. It is worth mentioning that variable    ( ) can be calculated easily through a 

mass balance on the mixing zone of the two adjustable diluted and concentrated 

streams which leads to  

{
   ( )  

  ( )      ( )   

  ( )   ( )

  ( )    ( )               
  (101) 

 

It is assumed that only    ( ) is measured and there is a known constant 

transportation delay   
     

  
 for    ( ) entering to the first reactor. Values of the 

constants appearing in (100) and (101), are given in Table 1. 

       Table 1 

       Values of parameters for the two series of continuous stirred tank reactors   

Parameter Symbol Value 

The first reactor volume    25     

The second reactor volume    25     

The first reactor inlet flow stream    10 (       ) 

The second reactor inlet flow stream    10 (       ) 

The second reactor outlet flow stream    10 (       ) 

The isothermal reaction coefficient in the first reactor     0.428 (
   

       
) 

The isothermal reaction coefficient in the second reactor     0.454(
   

       
) 

Order of the reaction   2 

Concentration of the diluted stream     0 (
   

   
) 

Concentration of the concentrated stream     20 (
   

   
) 

The steady state concentration in the first reactor       2.56 (
   

   
) 

The steady state concentration in the second reactor       1.15 (
   

   
) 

The transmission delay τ      0.18 min 
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Fig.  6. Schematic diagram of two continuous stirred tank reactors with input delay. 

 

In order to examine the capability of the proposed controller in load rejection,   ( ) is 

set to   (
   

   
) during the simulation and the first disturbance   ( ) is subjected to step 

wise changes as given by (102) 

  ( )  2
           
           

  (102) 

 

It is desired that the concentration of the second reactor tracks the reference trajectory 

            (
   

   
). The initial conditions of both reactors concentrations, their 

estimates, and other required parameters are: 0  ( )
  ( )

1  [    
    

], 0
 ̂ ( )

 ̂ ( )
1  [    

    
]  

   ( )         ( )    ( )      ,   ( )   ,   ( )     ,  ( )   , 

 ( )   .  
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To estimate the nonlinear functions, the NN approximator,    
    (   ), with input 

vector     ,   - containing 4 nodes with centers        
(         ) and width 

          (         ) evenly spaced in ,    - has been considered. To 

approximate the nonlinear functions   ( ),            , three NNs,   
   (  )   

          , with input vector    [     ̂  ]
 
containing 16 nodes with centers 

     
(         ) and width      

   (         ) evenly spaced in ,    -  

,    - are selected. Similarly, the NN   
   (  ) with input vector 

   0     ̂      ∫  ( )  
 

   
1
 

 containing 256 nodes with centers      
(          ) 

and width         (          ) evenly spaced in ,    - ,    -  ,    -  ,    - is 

chosen. 

 The rest of design parameters are given as follows:      ,        ,     , 

    ,     ,        ,      ,         ,       ,       ,       , 

        ,      ,     and   
                   .  

The process output and the desired trajectory are demonstrated in Fig.  7. Fig.  8 and 

Fig.  9, represent variations of species   concentrations and their estimations in the 

first and second reactors. Variations of the manipulated variable     and the applied 

control signal are shown in Fig.  10. Fig.  11 depicts the Nussbaum function and its 

argument. 
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Fig.  7. Concentration of the second reactor (red) and its desired trajectory (blue). 

 

 

Fig.  8. Variations of the first reactor concentration (red) and its estimate (blue). 
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Fig.  9. Variations of the second reactor concentration (red) and its estimation (blue). 

 

 

Fig.  10. Variations of process input variable     (blue) and the control signal (red). 
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Fig.  11. Variations of the Nussbaum function (blue) and its argument (red). 

 

6. Conclusion  

As stated in the introduction section there is no singularity free controller scheme 

proposed in the literature that can control an uncertain nonlinear system with 

unmeasured states subject to input saturation, input delay, and unknown control 

directions. In this paper, an observer-based adaptive singularity free output feedback 

NN controller is proposed for a class of nonlinear strict-feedback systems with 

unknown control directions in the presence of system input time delay and saturation. 

The proposed design method does not require a priori knowledge of the unknown 

virtual control coefficients signs. The controller singularity problem is avoided by 

employing a novel approach. The effect of input delay has been compensated utilizing 

an integral term in the last step of the controller design. “The explosion of 

complexity” occurring in the traditional backstepping technique has been avoided by 

utilizing the DSC technique in the controller design. It has been shown that all closed-
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loop signals remain semi-globally uniformly ultimately bounded (SGUUB) and the 

output tracking error converges to a small neighborhood of the origin by choosing the 

design parameters appropriately. Some guidelines for designing the proposed 

controller and selecting the design parameters are provided. Effectiveness of the 

proposed control scheme has been demonstrated via simulation study. In one of the 

simulation examples a chemical reactor system has been considered to show the 

application of the proposed control scheme. Simulation results show that all desired 

objectives have been achieved satisfactorily.  

7.  Future work 

 To make the proposed control scheme more suitable for the practical applications, 

actuator failure should be also taken into account. Extending the proposed algorithm 

to multi-input multi-output interconnected large-scale nonlinear systems is another 

aspect which improves the capability of the proposed control scheme. These two 

subjects will be considered as future works.     
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