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a b s t r a c t 

An effective Emergency Medical Service (EMS) system can provide medical relief supplies 

for common emergencies (fire, accident, etc.) or large-scale disasters (earthquake, tsunami, 

bioterrorism attack, explosion, etc.) and decrease morbidity and mortality dramatically. 

This paper proposes a distributionally robust model for optimizing the location, number 

of ambulances and demand assignment in an EMS system by minimizing the expected 

total cost. The model guarantees that the probability of satisfying the maximum concur- 

rent demand in the whole system is larger than a predetermined reliability level by in- 

troducing joint chance constraints and characterizes the expected total cost by moment 

uncertainty based on a data-driven approach. The model is approximated as a parametric 

second-order conic representable program. Furthermore, a special case of the model is con- 

sidered and converted into a standard second-order cone program, which can be efficiently 

solved with a proposed outer approximation algorithm. Extensive numerical experiments 

are conducted to illustrate the benefit of the proposed approach. Moreover, a dataset from 

a real application is also used to demonstrate the application of the data-driven approach. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

An Emergency Medical Service (EMS) is a crucial component of a modern health system. An efficient EMS system makes

it possible to rapidly respond to calls, transfer patients, provide timely treatment and save lives the first time emergencies

occur to the greatest possible extent ( Bélanger et al., 2019 ). In recent decades, numerous studies concerning EMS systems

have been conducted to improve the highly important decision strategies. Trade-offs between efficiency & equity and service

quality & cost, as well as the stochasticity inherent in the EMS system, result in challenges to making perfect decisions. With

the awareness of humanistic concern and the development of advanced optimization techniques, the EMS location and sizing

problem is the top consideration and has received considerable attention, as shown by the numerous review papers in the

past few decades ( Ba ̧s ar et al., 2012; Ahmadi-Javid et al., 2017; Aringhieri et al., 2017 ). 

Here, we consider an EMS location problem for planning the storage and distribution of medical supplies (ambulances,

etc.) to be used in emergencies. In terms of the performance of the EMS system, we mainly concentrate on the availability

of ambulances and long-term operational cost. Costly decisions should be taken into consideration due to their long term
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implications ( Aringhieri et al., 2017 ). We introduce joint chance constraints to achieve the availability of ambulances, which

extends the reliability level of each individual demand site to the entire geographical area. 

In order to handle inherent uncertainty in the EMS system, we consider a distributionally robust model (DRM) to make

strategic decisions. Distributionally robust optimization (DRO) is an emerging approach that describes random variables

through a distributional set with specific properties. Compared with common approaches applied in EMS systems, such

as queuing-based paradigms and scenario-based stochastic programming paradigms, the DRO approach has the following

advantages: (1) Managers are able to evaluate the worst-case situation by searching through the uncertainty set; and (2)

DRO can utilize the data on hand to limit the range of random variables, which alleviates the over-conservatism caused by

traditional robust optimization (RO), and is applicable to data-driven problems. Due to its computational tractability and the

advantages mentioned above, DRO has been successfully applied to many areas, such as portfolio optimization ( Delage and

Ye, 2010 ), lot-sizing problems ( Zhang et al., 2016 ) and appointment scheduling ( Mak et al., 2015 ). 

The main contributions of this research include: 

1. To the best of our knowledge, this work represents the first time that the EMS station location and sizing problem,

which is formulated as a two-stage risk-averse DRM, has been solved by DRO. We can utilize the demand data on hand

to estimate the distributional set more precisely and obtain a robust solution by a data-driven approach as well. 

2. The proposed program can successfully ensure a high reliability level on the demand sites of the entire geographical

area by extending regular individual chance constraints to joint chance constraints. It effectively avoids over-conservative

results from the well-known Bonferroni approximation by an iterative algorithm. 

3. An outer approximation (OA) algorithm is proposed to solve a special case of the proposed DRM, which can be approxi-

mated as a standard second-order cone program (SOCP). 

4. Extensive numerical experiments show that the DRM is superior to the traditional scenario-based approach in reliability.

Moreover, a dataset from real applications is constructed to demonstrate the application of the proposed DRM. Valuable

managerial insights are also observed. 

The remainder of the paper is organized as follows. In Section 2 , we review the related literature. In Section 3 , the

problem statement and formulation are presented. Then, the proposed two-stage stochastic program is approximated as a

parametric SOCP in Section 4 . Section 5 presents the iterative approach to obtain the optimal solution to the parametric

SOCP. Moreover, the special case that can be approximated as a standard SOCP is considered, and the OA algorithm is

proposed. Extensive numerical experiments are reported in Section 6 . Section 7 describes the application of our research to

large-scale emergencies. Finally, Section 8 presents the conclusions and outlines future research directions. 

2. Literature review 

Çelik et al. (2012) pointed out that research problems in the preparedness phase of the relief process, include: facility

location and supplies propositioning ( Rawls and Turnquist, 2011; Hong et al., 2014 ), supply distribution ( Liberatore et al.,

2014; Yuan and Wang, 2009 ), inventory management ( Rottkemper et al., 2011 ) and restoration of infrastructures network

( Nurre et al., 2012; He and Liu, 2012 ). Despite the unique characteristics of large-scale disasters (tremendous demand and

unpredictability), the solutions to the location and sizing optimization in the daily relief process and disaster are generally

the same ( Jia et al., 2007 ). The related literature can be classified according to the solution methods. In this paper, we

primarily focus on the location and distribution of emergency medical services; thus, a number of papers about EMS are

reviewed. 

Studies on EMS system design generally fall into two categories: deterministic studies and stochastic studies. Recent stud-

ies considering EMS system design as a deterministic problem are often performed in a specific setting. Jia et al. (2007) an-

alyzed the characteristics of large-scale emergencies and proposed tailored location models for EMS system in Los Angeles

County. Ndiaye and Alfares (2008) determined the optimal number and locations of primary health units for nomadic popu-

lation groups by a binary integer program. Scherrer (2008) developed an optimization model to determine the best location

and number of new Community Health Centers under several performance metrics. Ares et al. (2016) optimized the locations

of Roadside Wellness Centers in Africa based on effectiveness and equity by a column generation approach. 

As for EMS design problems considering stochastic factors, the methodologies to address uncertainty used in previous

studies can mainly be classified into three categories: the probabilistic paradigm, the stochastic programming paradigm, and

the robust counterpart ( Aringhieri et al., 2017 ). 

The probabilistic paradigm is generally reflected in the queuing-based approach. Larson (1973) first developed the de-

scriptive hypercube queuing model (HQM) with distinguishable servers in an EMS system by evaluating several point-

specific and arc-specific performance measures. Larson (1975) improved the computational tractability of these problems

in Larson (1973) by proposing an approximated HQM. Since then, HQM has been widely used in EMS-related research

( Galvão and Morabito, 2010 ). Geroliminis et al. (2009) proposed a Spatial Queuing Model (SQM) examining the cover-

age and median problems with the consideration of nonidentical service rates among servers and types of responses.

Souza et al. (2015) extended the traditional HQM to situations with multiple priority classes and a queue for waiting cus-

tomers. 

Stochastic programming has taken the lead in the EMS location and sizing research. The primary existing literature ad-

dresses the stochastic programming paradigm. Two types of stochastic models with different risk preference, which are
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named as risk-neutral and risk-averse models in academia, are extensively considered in the related research. Most of the

existing literature develops risk-neutral stochastic programming models ( Salmern and Apte, 2010; Rawls and Turnquist, 2010;

Mete and Zabinsky, 2010; Döyen et al., 2011 ). However, Elçi and Noyan (2018) stated that such models may have the disad-

vantage of poor performance in the case of rare disasters or undesirable realizations of random data due to the employment

of only the expected values and the omission of extreme situations. Therefore, emerging research has begun to focus on

risk-averse stochastic programming, following two main approaches: quantitative and qualitative. Quantitative studies con-

sider risk measures in the objective function. For example, Noyan (2012) and Elçi and Noyan (2018) addressed a mean-risk

objective based on the well-known risk measure of the conditional value-at-risk (CVaR) in addition to the expectation of the

total cost. Dalal and Üster (2018) combined the worst- and average-case considerations in an integrated emergency response

network design. 

Qualitative works enforce chance constraints to make risk-averse decisions. Chance constraints were first introduced by

Charnes et al. (1958) and are defined as 

P { A ( ̃  z ) ≥ b( ̃  z ) } ≥ 1 − ε, (1)

where A ( ̃ z ) ≥ b( ̃  z ) represents m linear constraints associated with an n −dimensional random vector ˜ z . The chance constraint

ensures that all the m linear constraints are jointly feasible with a probability no less than 1 − ε. The research on chance

constraints can be classified into two categories, namely, inequality (1) , called an individual chance constraint ( m = 1 ), and

joint chance constraints ( m > 1). 

Prékopa (1980) first proposed the idea of developing a stochastic programming model with a probabilistic constraint on

the second stage. Beraldi et al. (2004) developed a stochastic programming model with probabilistic constraints for a joint

location and dimensioning problem, and solved the problem using a scenario-based approach. Beraldi and Bruni (2009) fur-

ther built a deterministic equivalent scenario-based counterpart and applied the big-M method to solve the problem.

Rawls and Turnquist (2011) extended their earlier research ( Rawls and Turnquist, 2010 ) by adding chance constraints to

ensure that the probability of meeting all demand exceeded a predetermined value in all the scenarios. Noyan (2010) in-

troduced integrated chance constraints (ICCs) to EMS system design and obtained convex approximations of the generally

non-convex feasible sets defined by chance constraints. Similar to Noyan (2010) , Hong et al. (2014) considered a risk-averse

two-stage stochastic programming model and specified the conditional-value-at-risk (CVaR) as the risk measure based on a

scenario-based approach. Zhang and Li (2015) approximated individual chance constraints as second-order cone constraints

in an EMS location problem. Liu et al. (2016) combined the double service coverage standards and multi-vehicle assign-

ments to each demand site to ensure service coverage with the service reliability requirement using chance constraints in

two traffic safety metric scenarios. Özgün Elçi et al. (2018) employ individual chance-constrained linear program where the

uncertainty (post-disaster demands and transportation network conditions) is limited to the right-hand sides. 

Almost all of the above stochastic studies adopted the scenario-based approach for the solution process.

Snyder (2007) pointed out two major drawbacks of the scenario-based approach: the difficulty of identifying scenarios

and the computational intractability of large-scale problems. A reasonable alternative approach for optimization under

uncertainty is robust optimization, which has been successfully applied in the related research. For example, Zhang and

Jiang (2014) coped with the uncertain parameters in an EMS design problem by using the robust counterpart method.

Ni et al. (2018) proposed a robust min-max model of pre-disaster and post-disaster operations considering three uncertain

parameters. 

Robust optimization aims to find a solution that performs well in all possible realizations, which may result in over-

conservative results. In reality, even though the exact distributions or the enumeration set of random variables cannot

be fully recognized, moment information or uncertainty about the distribution itself is usually known ( Govindan et al.,

2017 ). DRO considers the moment information or distribution information, and outperforms traditional robust optimization

in many areas. Gabrel et al. (2014) divided DRO into two subgroups: robust optimization using moment information and

that applied directly to probability distributions. In the first subgroup, the first two moments are often taken into consider-

ation. Scarf et al. (1958) first proposed an inventory model in which only the mean and standard derivation of the demand

distribution are known. Becker (2011) addressed a decomposition method for DRO problems with a known mean, covariance

and support that recursively derived sub-policies along the projected dimensions. Zymler et al. (2013) developed a tractable

and semidefinite program for individual and joint chance constraints given the first two moments of random variables.

Mak et al. (2015) applied DRO to the field of appointment scheduling by assuming only the moments information of job

durations. Zhang et al. (2016) applied DRO in the context of a two-stage lot-sizing problem based only on mean-covariance

information about the distribution. In the second subgroup, uncertainty directly influencing the distributions is taken into

account. Delage and Ye (2010) implemented a DRO model that describes uncertainty in accordance with the form of the

distribution as well as moments information. Goh and Sim (2010) concentrated on a linear optimization problem under un-

certainty and presented a modular framework using expected-value terms to obtain an approximated and flexible solution.

Wiesemann et al. (2014) introduced standardized ambiguity sets that can be represented by the many ambiguity sets in

recent studies as special cases. 

Robust optimization has been extensively applied to obtain valid approximations of individual chance constraints ( Ben-

al and Nemirovski, 1998; Bertsimas and Sim, 2004; Ghaoui et al., 2006; Nemirovski and Shapiro, 2006 ). Individual chance

constraints have been applied to numerous areas, such as closed-loop supply chains ( Zhang and Unnikrishnan, 2016 ) and

portfolio optimization ( Bonami and Lejeune, 2009 ). However, studies on approximating joint chance-constrained problems
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based on robust optimization are far from satisfactory, and only a few related studies have been conducted since 2010 ( Chen

et al., 2010; Zymler et al., 2013; Hanasusanto et al., 2017 ). 

As seen from the above review, DRO has been successfully applied for many purposes but is rarely used in research on

EMS problems. Compared with previous research, our research considers a risk-averse stochastic programming model for

the EMS location and sizing problem that simultaneously possesses the following superior properties: 

• It considers the worst-case objective function in a quantitative risk-averse way. 
• It incorporates joint chance constraints to ensure demand satisfaction in a qualitative risk-averse way. 
• It uses DRO to overcome the drawbacks of scenario-based approaches and decreases overconservatism by utilizing the

data on hand and advanced DRO methodologies. 

3. Problem statement and formulation 

We study an EMS network that is composed of multi EMS stations and demand sites. Relief supplies such as ambulances

are stored in each EMS station to satisfy uncertain demands from demand sites. Demands at each demand site can be sat-

isfied by at least one EMS station. Two random variables are considered: (daily) demand ( �i ) and the maximum number of

concurrent demands (MNCD) ( D i ) occurring at demand site i . The former represents the total number of calling ambulances

(in 24 h). The latter denotes the maximum number of emergency calls received within the average time of an emergency

task. The goal of our research is to find the optimal EMS station locations and to assign the proper number of ambu-

lances that are used to satisfy a predetermined reliability level associated with the entire EMS network with the objective

of minimizing the total cost, which includes location cost, transportation cost, and the cost to maintain and purchase the

ambulances. 

We propose the EMS location and sizing problem as a two-stage DRM. The notation used throughout the paper is sum-

marized as follows. 

Parameters: 

I set of demand sites, indexed by i 

J set of candidate EMS stations, indexed by j

I j set of demand sites that can be covered by EMS station j, i.e., I j = { i ∈ I| c i j ≤ T } 
J i set of candidate EMS stations that can cover demand site i, i.e., J i = { j ∈ J| c i j ≤ T } 
T the maximal length of time required for the service trip 

f j (daily) construction cost at EMS station j

a j (daily) maintenance and purchase costs per ambulance at EMS station j

c i j distance between demand site i and EMS station j

β unit transportation cost 

�i random variable that represents (daily) demand at demand site i 

D i random variable that represents MNCD occurring at demand site i 

α the reliability level of the EMS system for the entire geographical area 

M a sufficiently large positive number 

Decision variables: 

X i j percentage of demand at demand site i served by EMS station j

Y j 1, if an EMS station is constructed at candidate EMS station j; 0 otherwise 

N j number of ambulances at EMS station j

Note that we use boldface letters to denote vectors or matrices. 

A joint chance constraint is introduced to ensure the reliability of the EMS system for the entire geographical area. This

constraint is an extension of individual chance constraints, which are extensively used in research on EMS location problems

( Ball and Lin, 1993; Özgün Elçi et al., 2018 ), though they cannot guarantee system reliability. Chance constraints are capable

of quantifying unsatisfied demand by a precise service level, whereas traditional robust optimization, such as Zhang and

Jiang (2014) , roughly characterizes the uncertainty set by exogenous safety parameters. Note that the our research differs

from the most relevant work of Zhang and Li (2015) in the following three aspects: 

• We employ joint change constraints instead of using standard individual chance constraints. The extension not only

dramatically improves system reliability in practice but also establishes the relationship between joint and individual

chance constraints through several unique properties. 
• We quantitatively incorporate a risk-averse, rather than risk-neutral, objective. Additionally, data are utilized to estimate

the distributional set less conservatively. 
• We propose an outer approximation algorithm to evade computational intractability when random variables are limited

in a specified ellipsoid. By contrast, Zhang and Li (2015) solved their problem with an off-the-shelf solver. 

The joint chance constraint associated with MNCD and the number of ambulances is formulated as 

P 

{ ∑ 

i ∈ I j 
D i X i j ≤ N j , ∀ j ∈ J 

} 

≥ α. (2) 
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The EMS location and sizing problem is formulated as a two-stage risk-averse DRM with joint chance constraints (2) ,

which is expressed as follows. 

P : min 

( ∑ 

j∈ J 
f j Y j + 

∑ 

j∈ J 
a j N j + sup 

F ∈F 
G ∈G 

E F,G [ g(Y , N, �, D ) ] 

) 

, (3)

s.t. N j ≤ MY j , ∀ j ∈ J, (4)

Y j ∈ { 0 , 1 } , ∀ j ∈ J, (5)

N j ∈ Z 

+ , ∀ j ∈ J. (6)

The purpose of objective function (3) is to minimize the supremum of the expected total cost by restricting the distributions

of the random variables � and D to specified distributional sets F and G. The total cost is the sum of the EMS station

construction costs, the maintenance and purchase costs for ambulances and the transportation cost. Note that g ( Y , N , θ , d )

is the second-stage cost for given Y , N , � = θ and D = d. Suppose F and G are the joint probability distribution functions

of distributional sets F and G, where F and G are composed of a series of distributions with specific properties for � and

D , respectively. We assume that F and G are unknown but belong to the predefined distributional sets F and G. Constraint

(4) implies that ambulances can only be assigned to open EMS stations. Constraints (5) and (6) are standard binary and

non-negative integral constraints. 

The second-stage cost function is given as follows: 

g(Y , N, θ, d) = min β
∑ 

i ∈ I 

( 

θi 

∑ 

j∈ J 
c i j X i j 

) 

, (7)

s.t. 
∑ 

j∈ J i 
X i j = 1 , ∀ i ∈ I, (8)

X i j ≤ Y j , ∀ i ∈ I, ∀ j ∈ J, (9)

P 

{ ∑ 

i ∈ I j 
d i X i j ≤ N j , ∀ j ∈ J 

} 

≥ α, (10)

0 ≤ X i j ≤ 1 . (11)

Objective function (7) minimizes the total transportation cost. Constraint (8) requires that the demand of each site is

completely assigned to the associated EMS stations. Constraint (9) indicates that demand sites can only be assigned to an

open EMS station. Constraint (10) is the joint chance constraint. Constraint (11) stands for the range of X ij . 

4. Reformulation 

Since the proposed model with joint chance constraints is nonconvex and computationally intractable, we reformulate it

into a parametric second-order cone program (SOCP) by estimating the expected daily demand via a data-driven approach

based on DRO ( Delage and Ye, 2010 ) and defining MNCD in an ellipsoid set with a known mean and covariance ( Zhang and

Jiang, 2014 ). The reason that we use the two different approaches for the two random variables is that daily demand is

relatively stable because peak values can be averaged throughout considerable amounts of historical data, while the MNCD

may exhibit violent fluctuations due to the existence of unforeseeable emergencies or disasters within a given time period. 

4.1. Objective function 

Function (7) shows that when the construction decision Y and the number of ambulances N are fixed, optimal solutions

of the second-stage problem only depend on the unit transportation cost ( β), distance parameters ( c ij ) and (daily) demand

at demand site i ( θ i ). Since objective function (7) is linear in θ, the expectation of g ( Y , N , θ, d ) is only determined by the

(daily) expected demand. Thus, considering the first moment uncertainty of (daily) demand � is sufficient to establish the

uncertain performance within the distributional set F . In this study, we assume that the first moment E [ �] is subject to
F 
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an ellipsoid set with an estimated mean μ ∈ R 

T and an estimated covariance matrix ��0, which can be depicted by the

following distributional set: 

F = 

{
F : (E F [ �] − μ) T �−1 (E F [ �] − μ) ≤ ε2 

}
, (12) 

where, ε > 0 controls the size of F . The selection of ε relies on the accuracy of estimating the first moment. 

The data-driven approach proposed by Delage and Ye (2010) is applied to determine the value of ε in (12) on the basis

of a set of M independent samples { θ i } M 

i =1 
of �. Suppose the mean and covariance matrix of � is μ0 and �0 . If there exists

an R ≥ 0 and a δ > 0 such that P { (� − μ0 ) 
T �−1 

0 
(� − μ0 ) ≤ R 2 } = 1 , then with a probability greater than 1 − δ, we have 

(μ0 − ˆ μ) T �−1 
0 (μ0 − ˆ μ) ≤ η(δ) , (13) 

where ˆ μ = (1 /M) 
∑ M 

i =1 θ
i and η(δ) = (R 2 /M)[2 + 

√ 

2 ln (1 /δ) ] 2 . 

Proposition 4.1. Problem P is reformulated as the following program, 

min 

r, q , X , Y , N 
β(εr + μT q ) + 

∑ 

j∈ J 

{
f j Y j + a j N j 

}
, (14) 

s.t. q i = 

∑ 

j∈ J i 
c i j X i j , ∀ i, (15) 

‖ �
1 
2 q ‖ ≤ r, (16) 

r ≥ 0 , q ≥ 0 , (17) 

(4) ∼ (6) , (8) ∼ (11) , 

where, r and q are auxiliary decision variables. 

Proof. Please refer to Appendix A . �

4.2. Chance constraints 

The distribution function G of D is constrained in the following ellipsoid uncertainty set: 

G = 

{ 

G : 
(D − u ) T �−1 (D − u ) ≤ Q 

2 

E G (D ) = u 

E G (D 

2 ) = u 

T u + �

} 

, (18) 

where, Q > 0 controls the size of G. Although an alternative, box uncertainly set, is well-known in the related research as

well, it is not considered because of its over-conservationism ( Baron et al., 2011 ). 

We firstly introduce a conic transformation of individual chance constraints in Proposition 4.4 . And then, the transforma-

tion is extended to a joint chance-constrained framework. 

Define v (N j , X j ) = 

∑ 

i ∈ I j d i X i j − N j = X 

T 
j 

d − N j . The conic transformation for individual chance constraints are based on

the upper bound of E (v (N j , X j ) 
+ ) , which is obtained in Lemma 4.2 . Moreover, the upper bound is a subadditive function

proved in Lemma 4.3 . 

Lemma 4.2. Suppose u and � are the mean and covariance matrix of random variable d respectively, π ( N j , X j ) is an upper

bound of E (v (N j , X j ) 
+ ) , where, 

π(N j , X j ) = 

1 

2 

(X 

T 
j u − N j ) + 

1 

2 

√ 

(X 

T 
j 

u − N j ) 2 + X 

T 
j 
�X j . (19) 

Proof. Because of the relation w 

+ = (w + | w | ) / 2 , then, E 

[
v (N j , X j ) 

+ ] = 

1 
2 E 

(
v (N j , X j ) + 

∣∣v (N j , X j ) 
∣∣). For a convex function

ψ( ·), Jensen’s inequality ψ [ E (X )] ≤ E [ ψ(X )] holds; thus, [ 
E 

∣∣v (N j , X j ) 
∣∣] 2 ≤ E 

[ ∣∣v (N j , X j ) 
∣∣2 
] 

= E 

[ ∣∣X 

T 
j d − N j 

∣∣2 ] , 
= E 

[ (
X 

T 
j d 

)2 + N 

2 
j − 2 N j X 

T 
j d 

] 
, 

= N 

2 
j + E 

[ (
X 

T 
j d 

)2 
] 

− 2 N j X 

T 
j E (d) , 

= 

[
X 

T 
j E (d) 

]
2 + X 

T 
j �X j + N 

2 
j − 2 N j X 

T 
j E (d) , 

= 

(
X 

T 
j u 

)2 + X 

T 
j �X j + N 

2 
j − 2 N j X 

T 
j u , 
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= (X 

T 
j u − N j ) 

2 + X 

T 
j �X j . 

The first inequality holds because function ψ(x ) = x 2 is convex. Therefore, E 

[
v (N j , X j ) 

+ ] ≤ 1 
2 (X 

T 
j 

u − N j ) +
1 
2 

√ 

(X 

T 
j 

u − N j ) 
2 + X 

T 
j 
�X j = π(N j , X j ) . �

Lemma 4.3. π ( N , X ) is a subadditive function, i.e., π(N 1 , X 1 ) + π(N 2 , X 2 ) ≥ π(N 1 + N 2 , X 1 + X 2 ) . 

Proof. Suppose S = X 

T u − N, U = (S, X ) , and �1 = 

⎛ 

⎜ ⎝ 

1 0 · · · 0 

. . 

. 

0 �

⎞ 

⎟ ⎠ 

, where, �1 is a positive semidefinite matrix. Then,

√ 

(X 

T u − N) 2 + X 

T �X = 

√ 

S 2 + X 

T �X = 

√ 

U 

T �1 U = 

∥∥∥� 1 
2 
1 

U 

∥∥∥, and || · || is the Euclidean norm. Because norm is a subadditive

function, i.e., || A || + || B || ≥ || A + B || , then 

∥∥∥� 1 
2 
1 

U 1 

∥∥∥+ 

∥∥∥� 1 
2 
1 

U 2 

∥∥∥ ≥
∥∥∥� 1 

2 
1 
(U 1 + U 2 ) 

∥∥∥. Thus, proved. �

After obtaining the upper bound of E (N j , X j ) , the conic transformation for individual chance constraints is summarized

in Proposition 4.4 . 

Proposition 4.4. A conic transformation of individual chance constraints 

P 

{ ∑ 

i ∈ I j 
d i X i j − N j ≤ 0 

} 

≥ 1 − ε, ∀ j ∈ J, (20)

is as follows: 

X 

T 
j u − N j + 

√ 

1 − ε 

ε 

√ 

X 

T 
j 
�X j ≤ 0 , ∀ j ∈ J, (21)

where, ε = 1 − α. 

Proof. By convention, each individual chance constraint is approximated by the CVaR measure ( Ben-Tal and Teboulle, 1986 ),

which provides computational tractability through convex approximations. Rockafellar and Uryasev (2010) popularized the

approach according to the definition of CVaR, � 1 − 

(·) , as follows: 

� 1 − 

( ̃ v ) � min 

ι

{ 
ι + 

1 

 

E [( ̃ v − ι) + ] 
} 
, (22)

where ˜ v is a random variable and ϖ∈ {0, 1} is a desired safety factor that is near to zero. CVaR represents the conditional

expectation of loss above the 1 −  quantile of the distribution. It is well known that CVaR constraint � 1 − 

[ y ( ̃ z )] ≤ 0 is the

tightest convex approximation to the individual chance constraint P { y ( ̃ z ) ≤ 0 } ≥ 1 −  , where y ( ̃ z ) is affinely dependent on

random vector ˜ z ( Nemirovski and Shapiro, 2006; Chen et al., 2010 ). Thus, 

min 

ι

{ 

ι + 

1 

ε 
E 

[ ( ∑ 

i ∈ I j 
d i X i j − N j − ι

) + ] } 

≤ 0 . 

is sufficient to imply (20) . 

Since the closed-from solution of E 

[(∑ 

i ∈ I j d i X i j − N j − ι
)+ ]

is still computationally intractable, utilizing the upper bound

of E [(·) + ] in Lemma 4.2 , we obtain, 

� 1 −ε [ v (N j , X j )] ≤ min 

ι

(
ι + 

π(N j + ι, X j ) 

ε 

)

= min 

ι

⎛ 

⎝ ι + 

X 

T 
j 

u − N j − ι

2 ε 
+ 

√ 

(X 

T 
j 

u − N j − ι) 2 + X 

T 
j 
�X j 

2 ε 

⎞ 

⎠ 

= X 

T 
j u − N j + 

√ 

1 − ε 

ε 

√ 

X 

T 
j 
�X j , (23)

where the last equality holds when ι∗ = 

(1 −2 ε) 
√ 

X T 
j 
�X j 

2 
√ 

ε (1 −ε ) 
+ X 

T 
j 

u − N j . Thus, inequality (21) is a valid conic transformation of

individual chance constraints (20) . �

The conic transformation of individual chance constraints described in Proposition 4.4 can be extended to a program

with joint chance constraints. 
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Constraint (10) is equivalent to P 

(⋃ 

j∈ J 

{ ∑ 

i ∈ I j d i X i j > N j 

} )
≤ ε. A well-known approximation for decomposing joint chance

constraints to individual ones is based on Bonferroni’s inequality, which implies the following: 

P 

( ⋃ 

j∈ J 

{ ∑ 

i ∈ I j 
d i X i j − N j > 0 

} ) 

≤
∑ 

j∈ J 

[ 

P 

( ∑ 

i ∈ I j 
d i X i j − N j > 0 

) ] 

≤ ε. (24) 

Hence, the joint chance constraints can be decomposed into several individual ones, i.e., 

P 

( ∑ 

i ∈ I j 
d i X i j − N j > 0 

) 

≤ ε j , ∀ j, ⇒ P 

( ∑ 

i ∈ I j 
d i X i j − N j ≤ 0 

) 

≥ 1 − ε j , ∀ j, (25) 

where 
∑ 

j∈ J ε j = ε. Since the only difference between individual chance constraint (20) and the result of the Bonferroni

approximation (25) is the value of ε and εi , the joint chance constraint (10) can be approximated to (21) . Nevertheless,

it is intractable to choose a proper value of εi . Therefore, Nemirovski and Shapiro (2006) and Chen et al. (2007) directly

supposed ε i = ε/ | J| , which results in an over-conservative approximation. 

Define set W as containing the support of the primitive uncertainty of MNCD ( D ). Following the approximation approach

proposed by Chen et al. (2010) ,we propose a parametric SOCP in Proposition 4.5 to optimize the EMS location and sizing

problem, where two parameters, the set J (a subset of W) and the constants λ j > 0 , ∀ j ∈ J , are introduced in (26) and (27) .

λj is a positive scaling parameter. Its value does not affect the feasible region of joint chance constraint (2) but can improve

the approximation ( Zymler et al., 2013 ). The conic transformation for individual chance constraints is added | J | times for each

demand site j in the standard Bonferroni approximation, i.e., P 

{ 
X 

T 
j 

d − N j 

} 
≥ 0 , ∀ j, while only one conic transformation for

the maximum value with fixed λ and J is applied, i.e., P 

{ 
max j∈J 

(
λ j 

[ 
X 

T 
j 

d − N j 

] )
≥ 0 

} 
, which is defined in Proposition 4.5 .

Proposition 4.5. Define 

ϒ(N, X , λ, J ) � min 

w 0 , w 

{ 

min 

ι

[
ι + 

π(w 0 + ι, w) 

ε 

]
+ 

1 

ε 

[ ∑ 

j∈J 
π
(
λ j N j − w 0 , λ j X j − w 

)] } 

;

then, 

ϒ(N, X , λ, J ) ≤ 0 (26) 

and 

max 
j∈W\J 

[
X 

T 
j d − N j 

]
≤ 0 (27) 

are sufficient to guarantee chance constraint (10) . 

Proof. Similar to Theorem 3.1. of Chen et al. (2010) . Please refer to Appendix B for more details. �

Define the upper bound of � 1 −ε [ v (N j , X j )] as φ1 −ε (N j , X j ) which equals to φ1 −ε (N j , X j ) = X 

T 
j 

u − N j + 

√ 

1 −ε 
ε 

√ 

X 

T 
j 
�X j 

based on (23) . Inequalities (26) and (27) in Proposition 4.5 constitute the conic quadric approximation for the joint chance

constraint (10) . By introducing two auxiliary variables, s 0 and s j , inequality (26) is equivalent to the following three con-

straints: 

s 0 + 

1 

ε 

∑ 

j∈J s j ≤ 0 , (28) 

φ1 −ε (w 0 , w) ≤ s 0 , (29) 

π
(
λ j N j − w 0 , λ j X j − w 

)
≤ s j , ∀ j ∈ J , (30) 

Moreover, recall that MNCD ( D ) belongs to distributional set (18) and based on Theorem 3 of Chen and Sim (2009) , we

obtain, 

max 
[
X 

T 
j d − N j 

]
= X 

T 
j u − N j + Q 

√ 

X 

T 
j 
�X j , (31) 

then, inequality (27) is expressed as X 

T 
j 

u − N j + Q 

√ 

X 

T 
j 
�X j ≤ 0 . 
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To sum up, problem P is reformulated as the following SOCP with parameters λj and J (RP-SOCP henceforth): 

RP-SOCP : min β(εr + μT q ) + 

∑ 

j∈ J 

{
f j Y j + a j N j 

}
, (32)

s.t. X 

T 
j u − N j + Q 

√ 

X 

T 
j 
�X j ≤ 0 , ∀ j ∈ W \ J , (33)

(5) , (6) , (8) , (9) , (11) , (15) , (16) , (17) , (28) , (29) , (30) . 

4.3. Properties associated with RP-SOCP 

The following theorem illustrates the benefit of the parametric SOCP approximation for joint chance constraints relative

to its individual counterpart in terms of system reliability. 

Theorem 4.6. Inequalities (28) –(30) dominate inequality (21) ∀ j ∈ J . 

Proof. Because (28) –(30) are equivalent to ϒ(N, X, λ, J ) ≤ 0 , then, 

0 ≥ min 

ι, w,w 0 

{ 

ι + 

1 

ε 

[ 

π(w 0 + ι, w) + 

∑ 

j∈W 

π(λ j N j − w 0 , λ j X j − w) 

] } 

, 

≥ min 

ι, w,w 0 

{ 
ι + 

1 

ε 

[ 
π(w 0 + ι, w) + π(λ j N j − w 0 , λ j X j − w) 

] } 
, 

≥ min 

ι

{ 
ι + 

1 

ε 

[ 
π(λ j N j + ι, λ j X j ) 

] } 
, 

λ j =1 = min 

ι

{ 
ι + 

1 

ε 

[ 
π(N j + ι, X j ) 

] } 
, 

= X 

T 
j u − N j + 

√ 

1 − ε 

ε 

√ 

X 

T 
j 
�X j , 

in which, the first inequality is valid through the definition of ϒ(N, X, λ, J ) in Proposition 4.5 ; the second inequality holds

by selecting π(λ j N j − w 0 , λ j X j − w) for facility j out of the summation; the third inequality is based on the subadditivity

of π ( · , · ) in Lemma 4.3 ; the last two equalities are established by supposing λ j = 1 and (23) , respectively. �

In our specified setting of an ellipsoid uncertainty set, RP-SOCP harbors the following superior properties, Proposition 4.7,

Lemma 4.8 and Theorem 4.9 , with respect to the radius Q . 

Proposition 4.7. When Q ≤
√ 

1 −ε 
ε , RP-SOCP obtains its optimal solution with J = ∅ . 

Proof. We prove this proposition by contradiction. Without loss of generality, suppose there exists an arbitrary j ◦ ∈ J in

the optimal solution such that J � = ∅ . For all j ∈ J , we need to ensure ϒ(N, X, λ, J ) ≤ 0 . Meanwhile, 

0 ≥ ϒ(N, X , λ, j ◦) ≥ X 

T 
j ◦ u − N j ◦ + 

√ 

1 − ε 

ε 

√ 

X 

T 
j ◦�X j ◦ , 

≥ X 

T 
j ◦ u − N j ◦ + Q 

√ 

X 

T 
j ◦�X j ◦ , 

where the first inequality holds according to Theorem 4.6 , and the second inequality stands as a result of Q ≤
√ 

1 −ε 
ε .

Therefore, X 

T 
j ◦ u − N j ◦ + Q 

√ 

X 

T 
j ◦�X j ◦ ≤ 0 is less conservative than Y( N , X , λ, j °) ≤ 0. That is, a better solution is obtained if

j ◦ ∈ W \ J (i.e., j ◦ / ∈ J ). This results in a contradiction since the result obtained when J � = ∅ is not optimal, thus complet-

ing the proof. �

Consequently, Proposition 4.7 reveals that RP-SOCP is equivalent to a standard SOCP ( Zhang et al., 2015 ) that is unrelated

to λj and J when Q ≤
√ 

1 −ε 
ε . Moreover, this SOCP can be efficiently solved with a customized OA algorithm proposed in

the following section. 

Lemma 4.8. When Q ≤
√ 

1 −ε 
ε , RP-SOCP is equivalent to the following program RP-1. 

RP-1 : min β(εr + μT q ) + 

∑ 

j∈ J 

{
f j Y j + a j N j 

}
, 

s.t. (5) , (6) , (8) , (9) , (11) , (15) , (16) , (17) , (33) . (34)
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Algorithm 1 Algorithm to solve RP-SOCP. 

Input: T C: objective function of problem RP-SOCP with the initial value T C 1 = 0 . 

H(X, N) : a subset of set W with the initial value H 

1 (X, N) = W . 

λ: a set of constants with the initial value λ1 
j 
= 1 / | J| , ∀ j ∈ H 

1 (X, N) . 

τ : a small number. 

K: the maximal number of iterations. 

Procedure: 

1: for k = 1 : K do 

2: Solve model RP-SOCP with input λk , H 

k (X, N) . Obtain optimal solution ( Y ∗, X 

∗, N 

∗) and the minimal objective T C ∗. 

Update ( Y k , X 

k , N 

k )=( Y ∗, X 

∗, N 

∗) and T C k +1 = T C ∗. 

3: if T C k +1 − T C k ≤ τ or H 

k (X, N) = ∅ then 

4: break; 

5: end if 

6: Find the optimal solution t ∗ for problem (35) with Y k , X 

k , N 

k , H 

k (X, N) , λk . 

7: Suppose H 

k +1 (X, N) := { j| t ∗
j 

> 0 , j ∈ W} . 
8: Solve problem (36) with Y k , X 

k , N 

k , H 

k +1 (X, N) . Obtain the optimal solution λ∗, set λk +1 = λ∗. 
9: end for 

 

 

 

 

 

 

 

 

 

 

 

 

Proof. According to Lemma 5.1 , when Q ≤
√ 

1 −ε 
ε , Algorithm 1 terminates in the second iteration with a termination crite-

rion H 

2 (X, N) = ∅ . This criterion implies that constraints (28) –(30) are redundant. Therefore, RP-SOCP is equivalent to RP-1,

in which the redundant constraints are removed. �

Define Z D , Z B , and Z I as the optimal minimal costs (32) of RP-SOCP, the Bonferroni approximation, and the individual

chance constraint, respectively. The following theorem holds: 

Theorem 4.9. The relations among Z B , Z I and Z D are as follows, 

1. If Q < 

√ 

1 −ε 
ε , then Z D < Z I . 

2. If Q = 

√ 

1 −ε 
ε , then Z D = Z I . 

3. If Q > 

√ 

1 −ε 
ε , then Z I < Z D < Z B . 

Proof. The proofs fall into the following three cases: 

1. If Q < 

√ 

1 −ε 
ε , J = ∅ based on Proposition 4.7 , then, X 

T 
j 

u − N j + Q 

√ 

X 

T 
j 
�X j < X 

T 
j 

u − N j + 

√ 

1 −ε 
ε 

√ 

X 

T 
j 
�X j ≤ 0 , ∀ j ∈ W,

which implies RP-SOCP is a relaxation of the program with individual chance constraints (20) , thus, Z D < Z I . 

2. If Q = 

√ 

1 −ε 
ε , the proof is similar to that in case (1). 

3. If Q > 

√ 

1 −ε 
ε , when j ∈ J , inequalities (28) –(30) are tighter than (21) as a result of Theorem 4.6 ; when j ∈ W \ J , X 

T 
j 

u −
N j + Q 

√ 

X 

T 
j 
�X j ≤ 0 is sufficient for (21) . Feasible domain of RP-SOCP dominates that of the program with individual

chance constraints, that is, Z D > Z I . Based on Theorem 3.2 in Chen et al. (2010) , Z D < Z B . 

�

5. Solution approach 

Although problem RP-SOCP can be solved by the procedure proposed by Chen et al. (2010) , the solution process is time-

consuming in general. However, a special case of the problem can be efficiently solved with an OA algorithm, as proposed

here. 

5.1. Solution procedure based on Chen et al. (2010) 

The difficulty in Proposition 4.5 is to find the appropriate λ and J because ϒ(N, X, λ, J ) is not jointly convex in Y ,

N and λ. However, if the value of Y and N are fixed, the value of λ can be iteratively improved by a SOCP, and we can

always find a λ> 0 and a set J ⊆ W such that the RP-SOCP model is feasible ( Chen et al., 2010 ). In order to improve

upon the objective by readjusting the value of λj and the set J , we need to get greater slack in model RP-SOCP. Defining

H(X, N) = 

{ 
j : max j∈W 

[ 
X 

T 
j 
d − N j 

] 
> 0 

} 
, the objective function (32) is improved iteratively by minimizing the total cost
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over λj , j ∈ H(X, N) . For a feasible solution ( X , N ) in RP-SOCP, we readjust H(X, N) by solving problem (35) : 

min 

t 

∑ J 
j=1 

t j , 

s.t. X 

T 
j 

u − N j + Q 

√ 

X 

T 
j 
�X j ≤ t j , ∀ j ∈ W, 

t ∈ R . 

(35)

and update H(X, N) = { j : t ∗
j 

> 0 } . 
If set H(X, N) is nonempty, the optimal λ∗ can be obtained by solving problem (36) . 

min 

λ
ϒ(N, X , λ, H) , 

s.t. 
∑ 

j∈H(X , N) λ j = 1 , 

λ j ≥ 0 , ∀ j ∈ H(X , N) . 

(36)

The corresponding procedure for improving the choice of λ and H(X, N) is illustrated in Algorithm 1 . 

Generally, although Algorithm 1 is computationally excruciating, it terminates in the second iteration if Q ≤
√ 

1 −ε 
ε , which

is proved in Lemma 5.1 . 

Lemma 5.1. When Q ≤
√ 

1 −ε
ε , Algorithm 1 terminates in the second iteration, with a termination criteria H 

2 (X, N) = ∅ . 
Proof. Because of the inequalities H 

1 (X, N) = W in the first iteration of Algorithm 1 , (28) –(30) dominate inequality

(21) ∀ j ∈ W according to Theorem 4.6 . When Q ≤
√ 

1 −ε 
ε , 

X 

T 
j u − N j + Q 

√ 

X 

T 
j 
�X j ≤ X 

T 
j u − N j + 

√ 

1 − ε 

ε 

√ 

X 

T 
j 
�X j ≤ 0 , 

and therefore, (21) is tighter than (33) . Then, (33) holds under the condition that (28) –(30) are satisfied. Because problem

(35) calculates the slack value of (33) , then t j ≤ 0 , ∀ j ∈ W . That is, H 

2 (X, N) = ∅ , which terminates the algorithm in the

second iteration. �

5.2. A customized outer approximation algorithm for solving RP-1 

An OA algorithm is a cutting plane algorithm proposed by Duran and Grossmann (1987) to solve mixed-integer nonlinear

programs (MINLPs). It iteratively decomposes an original MINLP into a nonlinear subproblem (SP) and a mixed-integer linear

master problem (MP). The values of integer variables are fixed in SP, which provides an upper bound on the original MINLP.

MP is implemented by a series of valid cuts based on the values of nonlinear terms and provides a lower bound. Fletcher and

Leyffer (1994) and Bonami et al. (2008) state that an OA algorithm is an exact algorithm for MINLPs with convex continuous

relaxations. Thus, we first prove the convexity of the continuous relaxation of RP-1 in Lemma 5.2 . 

Lemma 5.2. RP-1 with continuously relaxed Y and N is convex. 

Proof. RP-1 is a linear program except for the nonlinear constraints (16) and (33) ; thus, it is sufficient to prove the convexity

of (16) and (33) . We define 

�(q , r) = 

√ 

q 

T �q − r, (37)

�(X j , N j ) = Q 

√ 

X 

T 
j 
�X j + X 

T 
j u − N j . (38)

Similar to Proposition 2 of Shahabi et al. (2014) , �( q , r ) and �( X , N ) are convex. This completes the proof. �

5.2.1. Initialization 

We myopically find a feasible solution to initiate the OA algorithm. First, only one facility is set up with the lowest unit

construction cost, i.e., Y 0 
j ∗ = 1 , j ∗ = { j| f j = min s ∈ J f s } . Then, for the demand sites that cannot be covered by the constructed

facility, a separate facility is built, i.e., Y 0 
j ◦ = 1 , j ◦ = { j| I \ I j ∗ } . Finally, according to (8) and (9) , X 0 

i j 
= 1 if j = j ∗ and j = j ◦, ∀ i ∈

I; based on (33) , the value of N 

0 
j 

is N j = 

⌈
X 

0 
j 

T 
u + Q 

√ 

X 

0 
j 

T 
�X 

0 
j 

⌉
. 

5.2.2. OA subproblem 

The subproblem finds the optimal values of continuous variables with fixed values of the integer variables. In iteration

h , the input values of the integer variables are ˜ Y h 
j 

and 

˜ N 

h 
j 
, and SP can be summarized as follows: 

SP : min β(εr + μT q ) + 

∑ 

j∈ J 

{
f j ̃  Y h j + a j ̃  N 

h 
j 

}
, 
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s.t. X 

T 
j u − ˜ N 

h 
j + Q 

√ 

X 

T 
j 
�X j ≤ 0 , ∀ j ∈ W, 

X i j ≤ ˜ Y h j , ∀ i ∈ I, ∀ j ∈ J, 

(8) , (11) , (15) , (16) , (17) . 

5.2.3. OA master problem 

The OA master problem is a mixed-integer linear program (MILP) and obtains the optimal solutions for continuous de-

cision variables by utilizing the values of ˜ r h , ˜ q h , and 

˜ X 

h . The linear relaxations of nonlinear constraints (16) and (33) (OA

cuts) are proved in Proposition 5.3 . 

Proposition 5.3. The OA cuts associated with nonlinear constraints (16) and (33) in the hth iteration are as follows: 

q 

T � ˜ q 

h − r ̃ r h ≤ 0 , (39) 

(
X 

T 
j u − N j 

)√ 

˜ X 

h 
j 

T 
� ˜ X 

h 
j + QX 

T 
j � ˜ X 

h 
j ≤ 0 . (40) 

Proof. Considering the convexity of �( q , r ) and �( X j , N j ), as shown in Lemma 5.2 , and taking their first-order Taylor ex-

pansions, we obtain �( ̃  q h , ̃  r h ) + ∇�( ̃  q , ̃  r ) 
[
q − ˜ q h , r − ˜ r h 

]
T ≤ �(q , r) ≤ 0 and �( ̃  X 

h 
j 
, ˜ N 

h 
j 
) + ∇�( ̃  X 

h 
j 
, ˜ N 

h 
j 
) 
[ 

X j − ˜ X 

h 
j 
, N j − ˜ N 

h 
j 

] 
T ≤

�(X j , N j ) ≤ 0 , where ∇�( ̃  X 

h 
j 
, ˜ N 

h 
j 
) = 

[ 
( ̃ q h ) T �√ 

( ̃ q h ) T � ˜ q h 
, −1 

] 
and ∇�( ̃  X 

h 
j 
, ˜ N 

h 
j 
) = 

⎡ 

⎣ μT + 

Q( ̃ X h 
j 
) T �√ 

˜ X h 
j 

T 
� ˜ X h 

j 

, −1 

⎤ 

⎦ . Through simple algebra, we

can obtain the closed-form solutions of OA cuts (39) and (40) because ˜ r h = ( ̃  q ) T � ˜ q h . �

The OA master problem is summarized as follows: 

MP : min η

s.t. η ≥ β(εr + μT q ) + 

∑ 

j∈ J 

{
f j Y j + a j N j 

}
, (41) 

η ≤ UB 

h − ε, ∀ h, (42) 

(8) , (9) , (11) , (15) , (16) , (17) , (39) , (40) . 

where (41) defines the objective function and (42) ensures that the optimal solution to MP does not exceed the upper bound

in the h th iteration ( UB h ). We employ the ε-optimal OA framework proposed by Fletcher and Leyffer (1994) and terminate

the algorithm whenever MP is infeasible. The OA procedure is illustrated in Algorithm 2 . 

Algorithm 2 OA algorithm. 

Input: ˜ Y 0 
j 

and 

˜ N 

0 
j 
: initial value of binary/integer decision variable Y j and N j . 

LB 0 : lower bound, equals to −∞ . 

UB 0 : upper bound, equals to ∞ . 

K : the maximal number of iterations. 

Procedure: 

1: for h = 1 : K do 

2: Solve SP. Get the optimal values of ˜ X h 
i j 

, ˜ q h 
i 

and ˜ r h , denote the optimal value of the objective function as upper bound

UB h . 

3: Construct OA cuts (39) and (40) with fixed continuous variables ˜ X h 
i j 

, ˜ q h 
i 

and ˜ r h and solve MP, obtain 

˜ Y h 
j 

and 

˜ N 

h 
j 
, denote

the optimal objective value as LB h . 

4: if MP is infeasible then 

5: stop and return the incumbent value; 

6: end if 

7: end for 

6. Numerical results 

We conduct numerical experiments to test the efficiency and reliability of four methods of addressing the EMS location

problem, including Bonferroni approximation, individual chance constraints, the scenario-based approach (see Appendix C ),
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Table 1 

Comparison of the objective values between ScB, DRM, Bon and Ind. 

| I| = | J| ScB DRM Bon Ind 

10 19 30 40 50 10 19 30 40 50 

10 0.97 0.97 0.99 0.99 1.00 0.98 1.00 1.01 1.02 1.03 1.13 1.00 

15 0.92 0.93 0.94 0.94 0.96 0.96 1.00 1.12 1.15 1.18 1.38 1.00 

20 0.98 0.99 0.99 1.00 1.00 0.98 1.00 1.02 1.04 1.05 1.28 1.00 

25 0.83 0.84 0.84 0.85 0.85 0.96 1.00 1.03 1.06 1.08 1.51 1.00 

30 0.82 0.82 0.83 0.83 0.84 0.97 1.00 1.03 1.05 1.08 1.48 1.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and the DRM proposed in Section 6.1 . Moreover, the performance of the proposed OA algorithm is also evaluated. We remark

that individual chance constraints ensure local reliability for each demand site independently, while the other methods

guarantee system reliability throughout the entire geographic area. The different network topologies determined by the

solutions are compared in Section 6.3 . Validations of the DRM are presented in Section 6.4 . In addition, experiments with

real-life data are reported in Section 6.5 . 

The numerical experiments are conducted on a computer with an Intel Core i9 Duo 3.40 GHz processor and 32GB of

RAM. The Mosek Version 8.0.0.79 optimization toolbox for MATLAB ( ApS, 2015 ) is employed to solve RP-SOCP, RP-1, and MP

and SP of the OA algorithm. The solver terminates with a relative optimality tolerance equal to 0.01. YALMIP ( Löfberg, 2004 )

is also used to enable the use of MATLAB. 

6.1. Performance analysis 

Twenty-five groups of tests with five instances for each are conducted. The number of facilities and demand sites, I and

J , are equal with values of 10, 15, 20, 25 and 30. Q is the radius of the distributional set consisting of a random MNCD ( D ).

Q 

2 is assigned as 10, 19, 30, 40 and 50. Twenty scenarios for � and D each are generated in the scenario-based approach. 

Experiments are generated on a 10 × 10 square, representing the demand sites and candidate facilities. Parameters are

similar with those in Zhang and Li (2015) and are summarized as follows. 

f j Uniformly generated from [25,75] 

a j Uniformly generated from [1,3] 

β Equal to 5 

α Equal to 0.95 

�i Uniformly generated from the distributional set defined in Eq. (12) , � is positive semidefinite matrix, and μ ∈ U[0.1,5], σi ∼ U[0 . 5 , 1 . 5] ; (daily) 

demand correlation coefficients ρ�
i j 

= 0 . 1 , ∀ i � = j & ρ�
i j 

= 1 , ∀ i = j

D i Uniformly generated from the distributional set defined in equation (18) , � is a positive semidefinite matrix and u ∈ U[0.1,10], γi ∼ U[0 , 2] ; 

MNCD correlation coefficients ρD 
i j 

= 0 . 1 , ∀ i � = j & ρD 
i j 

= 1 , ∀ i = j

We use the data-driven method proposed by Delage and Ye (2010) and Zhang et al. (2016) to construct the distributional

set F defined in (12) . One thousand scenarios of randomly generated data for (daily) demand at each demand sites are

obtained based on a multivariate normal distribution. The procedure for the data-driven approach is as follows: First, the

sample mean and variance for � are calculated as ˆ μ and �0 . Then, based on (12) , we suppose δ = 0 . 05 , R 2 = max 
m =1 , ··· ,M 

(�m 

−
ˆ μ) T �−1 

0 
(�m 

− ˆ μ) and ε = (R/ 
√ 

M )[2 + 

√ 

2 ln (1 /δ) ] to estimate the distributional sets for E (�) . distributional set G is an

ellipsoid of radius Q ( Q = 

√ 

10 , 
√ 

19 , 
√ 

30 , 
√ 

40 , 
√ 

50 ). Finally, Algorithm 1 is applied with τ = 0 . 01 and K = 30 . 

We compare the expected minimized total cost (objective value) of the conducted five instance determined by the so-

lutions of scenario-based approach (ScB), the proposed DRM (DRM), Bonferroni approximation (Bon), and individual chance

constraints (Ind) in Table 1 . Note that Ind represents the program where the original individual chance constraints (20) are

replaced with CVaR-based approximations (21) . To highlight the comparison, the final results are translated into the ratio

form; that is, the objective value of other algorithms/the objective value of individual chance constraints. 

It is significant that when the radius Q of distributional set (18) decreases, which implies the uncertainty set of D be-

comes smaller, the benefit of exact estimation of uncertain MNCD is illustrated by less total cost. Based on Theorem 4.9 ,

when ε = 0 . 05 , Q 

2 = (1 − ε) /ε = 19 , then Z I = Z D , the ratio of the objective value between the DRM when Q 

2 = 19 and

individual chance constraints are all equal to 1; similar results when Q 

2 < (1 − ε) /ε and Q 

2 > (1 − ε) /ε also verify the the-

orem. The theoretical and numerical results also reveal that the proposed DRM can effectively avoid the over-conservative

results obtaining from the Bonferroni approximation. Because ScB randomly considers limited number of scenarios while

DRM considers all possible scenarios, thus, the objective value of ScB is smaller than or equal to that of DRM. Compared

with the individual chance constraints and the scenario-based approach, DRM yields a larger cost because of robustness;

moreover, Section 6.4 shows a higher system reliability than the approaches mentioned above. 

Table 2 reports the CPU running time results associated with ScB, DRM, Bon and Ind. The Bonferroni approximation can

obtain the optimal solution within the shortest time and DRM comes in last. However, computational efficiency is not the

most pivotal issue in a facility location problem compared with those in a real-time system. Moreover, there is no significant

difference in the computational time for DRM with respect to Q when | I | and | J | are small; when | I | and | J | become larger
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Table 2 

A summary of CPU running time (specified in seconds) . 

| I| = | J| Bon ScB 

Q 2 = 10 Q 2 = 19 Q 2 = 30 Q 2 = 40 Q 2 = 50 

10 1.10 3.22 3.51 3.44 3.57 5.04 

(0.36) (0.39) (0.41) (0.45) (0.72) (0.88) 

15 6.38 17.80 20.94 19.80 20.49 22.06 

(4.41) (4.95) (8.15) (7.19) (4.37) (8.14) 

20 59.29 78.57 73.80 85.30 72.65 79.70 

(19.30) (23.98) (22.69) (31.74) (18.53) (29.76) 

25 141.01 280.97 285.95 305.04 265.17 314.62 

(108.64) (120.23) (75.98) (134.40) (98.60) (114.05) 

30 1070.99 705.25 656.45 588.97 669.97 727.36 

(521.81) (160.50) (81.58) (122.75) (113.47) (138.55) 

| I| = | J| Ind DRM 

Q 2 = 10 Q 2 = 19 Q 2 = 30 Q 2 = 40 Q 2 = 50 

10 1.23 15.64 15.56 17.56 14.90 14.89 

(0.37) (7.84) (13.57) (17.72) (12.59) (12.70) 

15 11.19 79.09 75.01 87.98 87.73 84.68 

(6.56) (36.19) (31.51) (25.36) (25.37) (25.90) 

20 121.72 285.20 278.42 262.60 253.34 248.22 

(39.43) (24.48) (35.80) (27.63) (28.01) (26.95) 

25 502.89 1580.35 1430.90 1369.63 1352.11 1466.92 

(258.29) (341.25) (226.73) (199.38) (204.21) (370.54) 

30 7553.39 12403.49 11594.63 10967.14 9826.28 9166.01 

(4829.04) (4819.81) (5143.79) (3562.55) (3046.06) (3009.20) 

Table 3 

Comparison between Mosek and OA in CPU running time (specified in seconds). 

| I| = | J| Q 2 = 10 Q 2 = 19 

DRM Mosek OA DRM Mosek OA 

10 15.64 0.31 0.14 15.56 0.29 0.14 

15 79.09 1.07 0.30 75.01 1.14 0.32 

20 285.2 6.33 1.39 278.42 2.28 0.76 

25 1580.35 40.25 6.12 1430.90 37.11 5.69 

30 12403.49 1216.15 17.92 11594.63 197.52 6.62 

35 1440 0.0 0 ∗ 7296.62 74.80 1440 0.0 0 ∗ 7358.82 69.84 

40 1440 0.0 0 ∗ 1440 0.0 0 ∗ 396.03 1440 0.0 0 ∗ 1440 0.0 0 ∗ 401.43 

45 1440 0.0 0 ∗ 1440 0.0 0 ∗ 742.57 1440 0.0 0 ∗ 1440 0.0 0 ∗ 1075.07 

50 1440 0.0 0 ∗ 1440 0.0 0 ∗ 4874.18 1440 0.0 0 ∗ 1440 0.0 0 ∗ 4835.95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and Q 

2 ≥ 19, running time tends to become shorter. CPU running time with respect to the scenario-based approach doesn’t

show a monotonous trend. 

Five instances for nine levels of | I | and | J | are randomly generated to illustrate the computational efficiency of the special

case ( Q 

2 = 10 and Q 

2 = 19 ). Table 3 reports the expected CPU running time of five instances associated with the three

solution approaches. The “DRM” column shows the results of solving RP-SOCP with Algorithm 1 . “Mosek” represents the

results of directly solving RP-1 with Mosek, and the “OA” column reports the CPU running time for solving RP-1 with the

proposed OA algorithm. The time limit for the solution approaches is set to 14,400 s. Results with a superscript ∗ indicate

that the optimal solutions for all instances cannot be found within the time limit, while in the other cases, the optimal

solutions are obtained. 

The results illustrate that the OA algorithm significantly outperforms the other two solution approaches. The comparison

between “Mosek” and “DRM” confirms that the properties obtained by Lemmas 5.1 and 4.8 can help to speed up the solution

process for the original EMS location and sizing problem when the uncertainty set is relatively small. 

6.2. Sensitivity analysis 

Sensitivity analysis of unit transportation cost ( β) and expectation of MNCD ( u ) are considered, experiments are con-

ducted with the same input parameters except for the one for sensitivity analysis. Figures in each subsection illustrate the

total cost (blue dashed line), total number of constructed facilities (values of the bars) and total number of ambulances

(values in the brackets). 

6.2.1. Sensitivity analysis of unit transportation cost ( β) 

As shown in Fig. 1 , the total cost of an EMS system proportionally increases when β becomes larger. The total number

of ambulances and number of constructed facilities also increase with β . This dynamic is because the growth of the total
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number of ambulances and the number of open facilities can effectively decrease the travel distance during a relief response,

which in turn avoids increasing the transportation cost due to the large β . 

6.2.2. Sensitivity analysis of the expected MNCD at each site ( u ) 

We consider the effect of the expected MNCD ( u ) at each demand site. Fig. 2 illustrates that the total cost and total

number of ambulances both grow proportionally as the expected MNCD increases. On the other hand, the number of con-

structed facilities remains almost unchanged, which suggests that the variation of u does not have a significant influence on

facility location decisions. The growing MNCD is satisfied by increasing the number of ambulances. 

6.3. Topology analysis 

We compare topology networks determined by the solutions of methodologies that ensure the reliability level on the

entire geographical area, i.e., Bon, Scb and DRM. To do so, we randomly generate 10 random graphs with 25 nodes for each

on a 10 × 10 square, representing the demand points and potential facility locations. Other parameters are the same as

described in Section 6.1 . A typical solution is summarized in Fig. 3 . In the figures, black dots denote the locations of facility

candidates (co-located with the demand sites); red circles indicate that the associated facility is open, and the thickness of
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Fig. 3. Topology analysis of Bon, ScB and DRM. 

Table 4 

The definitions of M#EF, M#DF, M#CF and MTD. 

Properties for facilities M#EF M#DF 

Definition 
∑ 

j 

∑ 

i I 
{

X i j > 0 
}
/ 
∑ 

j Y j �j �i [ d i X ij ]/ �j Y j 

Properties for demand sites M#CF MTD 

Definition 
∑ 

i 

∑ 

j I{ X i j > 0 } /I �i �j [ c ij X ij ]/ I 

Table 5 

Comparing the topology of the three methodologies. 

Total cost TY TN M#EF M#DF M#CF MTD 

Bon 4065.090 5 461 8.0 0 0 10.800 1.600 1.474 

ScB 2208.111 17 194 2.059 3.176 1.400 0.469 

DRM 2292.330 10 219 3.800 5.400 1.520 0.699 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

red circles represents the number of ambulances held by that facility; blue lines illustrate the demand coverage, and the

thickness is proportional to the percentage of allocation. 

We define mean number of edges/facility (M#EF), mean number of demand/facility (M#DF) as properties for facilities

( Baron et al., 2011 ); mean number of connected facilities per demand sites (M#CF), mean travel distance (MTD) as properties

for demand sites in Table 4 , where I(·) is the indicator function. 

Total cost (TC), total number of constructed facilities (TY), total number of ambulances (TN), M#EF M#DF, M#CF and

MTD are reported in Table 5 . We make several observations. 

1. In terms of different total number of constructed facilities and ambulances, the topology network obtained by the

scenario-based approach tends to open more facilities with fewer ambulances. In contrast, Bonferroni approximation

establishes fewer facilities with a larger number of ambulances. The topology network obtained by the DRM is a com-

promise of the scenario-based approach and the Bonferroni approximation. DRM constructs a modest number of facilities,

and an appropriate number of ambulances are assigned, combining the advantages of the other methodologies. 

2. In terms of the properties for constructed facilities, mean number of connected demand sites and the mean number of

arranged demand load under the Bonferroni approximation are 8.0 and 10.8 respectively, which are significantly larger

than those in the scenario-based approach and the proposed DRM. However, centralized network topology like the Bon-

ferroni approximation may face higher disruption risk in disasters, as the breakdown of any open facility may cause

demand shortage in a large number of demand sites. 

3. In terms of the properties for demand sites, mean number of connected facilities are similar in Bon, ScB and DRM.

Demands at each demand sites are satisfied by more than one open facilities in all the three methodologies, which ex-

presses flexibility and robustness facing demand uncertainty. As for weighted travel distance, we find the transportation

cost for the scenario-based approach and the proposed DRM take 31.85% and 47.46% of that in the Bonferroni approxi-

mation. 

6.4. Validation 

In this section, a Monte Carlo simulation is employed to valid the proposed DRM. We assume ρD 
i j 

= 0 , ∀ i � = j, other pa-

rameters are the same with those in Section 6.1 , and simulate the probability of satisfying demand in the entire geographic
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Table 6 

Monte Carlo simulation between Bon, Ind, ScB, DRM. 

Open α = 0 . 60 α = 0 . 70 α = 0 . 80 

facility Bon Ind ScB DRM Bon Ind ScB DRM Bon Ind ScB DRM 

2 1.00 0.89 1.00 1.00 1.00 0.94 1.00 1.00 1.00 0.98 1.00 1.00 

5 - - 1.00 - - 0.94 1.00 - - - - - 

6 1.00 0.89 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.98 1.00 1.00 

7 - 0.89 1.00 - - 0.98 1.00 - - 0.98 - - 

8 1.00 0.90 1.00 1.00 1.00 0.96 1.00 1.00 1.00 0.98 1.00 1.00 

9 1.00 0.97 1.00 1.00 1.00 0.95 1.00 1.00 1.00 0.98 1.00 1.00 

12 1.00 0.98 1.00 1.00 1.00 0.97 1.00 1.00 1.00 0.98 1.00 1.00 

14 1.00 0.97 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.98 1.00 1.00 

15 - 0.89 - - - - - - - - - - 

16 1.00 0.92 1.00 1.00 1.00 0.94 1.00 1.00 1.00 0.98 1.00 1.00 

17 1.00 0.89 1.00 1.00 1.00 0.94 1.00 1.00 1.00 0.98 1.00 1.00 

18 1.00 0.89 0.50 1.00 1.00 0.94 0.76 1.00 1.00 0.98 0.76 1.00 

19 - 0.89 0.50 1.00 - 0.94 0.76 - - 0.98 0.76 - 

20 - 0.89 0.92 - - 0.94 0.92 - - 0.98 1.00 - 

21 - 0.89 1.00 - - 0.93 1.00 - - 0.98 1.00 - 

22 - 0.97 1.00 1.00 - 0.97 1.00 1.00 - 0.98 1.00 1.00 

24 - 0.96 1.00 - - 0.94 - - - 0.98 1.00 - 

25 1.00 0.92 - 1.00 1.00 - - 1.00 1.00 0.98 1.00 1.00 

26 1.00 0.96 0.98 1.00 1.00 0.94 0.98 1.00 - 0.98 0.98 1.00 

27 - 0.89 0.98 - - 0.94 0.98 - - 0.98 0.98 - 

29 - 0.89 0.22 - - 0.94 0.98 - - 0.98 0.98 - 

30 1.00 0.92 1.00 1.00 1.00 0.94 1.00 1.00 1.00 0.98 1.00 1.00 

Reliability 1.00 0.16 0.05 1.00 1.00 0.34 0.50 1.00 1.00 0.66 0.54 1.00 

Open α = 0 . 90 α = 0 . 95 α = 0 . 99 

facility Bon Ind ScB DRM Bon Ind ScB DRM Bon Ind ScB DRM 

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

5 - - 1.00 - - - 1.00 - - - 1.00 - 

6 - 1.00 1.00 1.00 - 1.00 1.00 1.00 - 1.00 1.00 1.00 

7 - 1.00 1.00 - - 1.00 1.00 - - - 1.00 - 

8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 - 1.00 1.00 1.00 

12 1.00 1.00 1.00 1.00 - 1.00 1.00 1.00 - 1.00 1.00 1.00 

14 1.00 1.00 1.00 1.00 - 1.00 1.00 1.00 - 1.00 1.00 1.00 

16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

17 - 1.00 1.00 1.00 - 1.00 1.00 1.00 - 1.00 1.00 1.00 

18 1.00 1.00 0.81 1.00 1.00 1.00 0.81 1.00 1.00 1.00 0.81 1.00 

19 - 1.00 0.76 - - 1.00 0.76 - - - 0.76 - 

20 - 1.00 1.00 - - 1.00 1.00 - - - 1.00 - 

21 - 1.00 1.00 - - 1.00 1.00 - - - 1.00 - 

22 1.00 1.00 1.00 1.00 - 1.00 1.00 1.00 - - 1.00 1.00 

24 - 1.00 1.00 - - - 1.00 - - - - - 

25 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 

26 - 1.00 1.00 1.00 - 1.00 1.00 1.00 - 1.00 1.00 1.00 

27 - 1.00 0.98 - - 1.00 1.00 - - - 1.00 - 

29 - - 0.98 - - - 0.99 - - - 1.00 - 

30 - 1.00 1.00 1.00 - 1.00 1.00 1.00 - 1.00 1.00 1.00 

Reliability 1.00 0.98 0.59 1.00 1.00 1.00 0.61 1.00 1.00 1.00 0.62 1.00 

 

 

 

 

 

areas obtained from the four solution methodologies, including Bon, Ind, ScB and DRM, when reliability level α changes

from 0.6 to 0.99. The Monte Carlo simulation procedure is employed as follows. 

Step 1: Supposing I = J = 30 and Q 

2 = 50 , obtain the optimal EMS networks and the corresponding ambulance numbers at

each EMS station. 

Step 2: Uniformly generate 10 0,0 0 0 samples of MNCD at each demand site within distributional set (16). 

Step 3: Calculate the ratio of satisfied demand for all open facilities. 

The ratios of satisfied demand in all samples are presented in Table 6 . The first column lists the open EMS facilities.

Symbol “ - ” in Table 6 indicates that the corresponding facility is not constructed. As shown in Table 6 , all the approximated

reliability levels exceed the predetermined α separately. Table 6 also summarizes the system reliabilities associated with the

four approaches. We define 

Reliability = 

∏ 

j∈P 
p j , 

where P = { j| Y j = 1 } , p j denotes the probability of satisfying demand at demand site j in the Monte Carlo simulation. 
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Table 7 

Comparison of five approaches with real data. 

Bon I-A I-S I-U DRM 

Ratio of total cost 1.234 0.966 0.950 0.935 1.0 0 0 

Ratio of CPU time 0.212 0.619 0.754 0.868 1.0 0 0 

Table 8 

Monte Carlo simulation for real data. 

Open facility Bon I-A I-S I-U DRM 

Arbitrary random variables 8 1.0 0 0 0 0.9860 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

9 1.0 0 0 0 1.0 0 0 0 0.9560 0.9690 1.0 0 0 0 

24 1.0 0 0 0 0.9900 0.9070 0.8820 1.0 0 0 0 

Reliability 1.0 0 0 0 0.9761 0.8671 0.8547 1.0 0 0 0 

Multivariate-normal-distributed random variables 8 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

9 1.0 0 0 0 1.0 0 0 0 0.9993 0.9997 1.0 0 0 0 

24 1.0 0 0 0 1.0 0 0 0 0.9988 0.9977 1.0 0 0 0 

Reliability 1.0 0 0 0 1.0 0 0 0 0.9981 0.9974 1.0 0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although individual chance constraints and the scenario-based approach obtain a reliability level higher than the prede-

termined level in each demand site independently, the system reliability is poor. In contrast, the results from the Bonferroni

approximation and the proposed DRM are much more stable. Moreover, the proposed DRM can avoid the over-conservatism

resulting from the Bonferroni approximation and reduce total cost, as shown in Table 1 . Furthermore, when α becomes

larger, the reliability may become smaller in the scenario-based approach since the selected samples are randomly gener-

ated. However, this dynamic has not been observed in the results associated with the other three methods based on robust

optimization. 

6.5. Experimentation with real-life data and value of the DRM 

We apply the proposed DRM to the 30 datasets in Zhang and Li (2015) . The cost-related parameters and the calculation

of MNCD are the same as those in Zhang and Li (2015) , and we suppose α = 0 . 95 . One thousand samples of historical data

for daily demand and MNCD are obtained, the distributional set of E F (�) (12) is estimated in the same way of Section 6.1 .

The distributional set of MNCD ( D ) (18) is obtained by Q 

2 = max 
m =1 , ··· ,M 

(D m 

− ˆ u ) T �−1 
0 

(D m 

− ˆ u ) , where ˆ u and �0 are the sample

mean and variance of D . 

In order to test algorithm performance in the application, we compare the proposed DRM with the approaches con-

sidered in Zhang and Li (2015) , in which three different approximations for individual chance constraints are considered

when the MNCD represents arbitrary, symmetric and unimodal symmetric random variables. The experiments for the Bon-

ferroni approximation are also conducted for comparison. The results are reported in Tables 7 and 8 . In the first row of the

tables, “I-A”, “I-S”, “I-U” represent individual chance constraints for an arbitrary, symmetric, unimodal symmetric random

variable, respectively. Note that“I-A” is the same with Ind and that“I-S” and “I-U” represent approximated individual chance 

constraints with more information on the distribution, and these terms are less conservative than “I-A”. 

Table 7 summarizes the minimized total cost and the CPU running time, to highlight the comparison, the final results

are translated into the ratio form; that is, other algorithms/DRM. Recall that individual chance constraints only guarantee

the probability of satisfying demand in each demand sites independently, while Bon and DRM ensure system reliability

in the entire geographic area. Total costs of Bon and DRM are larger than those of the approach proposed in Zhang and

Li (2015) because of robustness. Compared with DRM, the Bonferroni approximation increases total cost by 23.4%, while the

other three approximations for individual chance constraints drop total cost up by 7%. 

Table 8 reports the Monte Carlo simulation results similar to the procedure described in Section 6.4 . One hundred thou-

sand samples of � are generated within the distributional set (12) when ε = 8 . 493 according to the data-driven approach

described in Section 6.1 . Two kinds of samples are generated to test the probability of satisfying MNCD in each demand

sites and the entire geographic area: 1 © Arbitrary random variables uniformly generated within the distributional set (18) .

2 © Multivariate-normal-distributed random variables with mean 

ˆ u and covariance matrix �0 . 

As shown in Table 8 , if MNCD are arbitrary random variables, the approximated service levels for each open facility in

Bon, I-A, DRM are greater than 0.95. Since the random samples are not guaranteed to be symmetric or unimodal symmetric,

the service levels in I-S and I-U are not necessarily larger than 0.95. In the case described in Table 8 , only three facilities

are opened, for I-A, I-S and I-U, the product of p j ≥ 0 . 95 , j = 8 , 9 , 24 can be greater than 0.95, which implies to ensure the

system reliability. However, this is only the case in numerical results, theoretically, Bon and DRM ensure system reliability

while I-A, I-S and I-U ensure local reliability. 

Nevertheless, regarding system reliability, the Bonferroni approximation and the proposed DRM are more efficient than

the other three approaches. If MNCD are normally-distributed random variables, the probability of satisfying demands in

each site is larger than 0.95 in all of the five approaches. To sum up, if no other distribution information of MNCD is
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available except for the first and second moments, DRM can obtain a solution with higher system reliability and lower cost

in the real application. 

7. Discussion of the extended application of the model in disaster management 

An effective EMS system does not merely manage common emergencies (such as household fires, first-aid treatment

and vehicle accidents) but also provides medical relief supplies in the wake of large-scale disasters (earthquake, tsunami,

bioterrorism attack, explosion, etc.) with a very short response time. Research on disaster operations management and hu-

manitarian logistics has grown rapidly in the past few years. Emergency management can generally be divided into three

phases: preparedness, (post-disaster) response and recovery ( Özdamar and Ertem, 2015 ). The storage location and inventory

levels for medical supplies should be determined in the preparedness phase, thereby mitigating the risk of incurring a catas-

trophic disaster. Recent large-scale disasters have underscored the need for effective and efficient public health and medical

responses ( Brandeau et al., 2009 ). In 2005, Hurricanes Katrina, Wilma and Rita caused more than $ 100 billion in damage

because of the inadequacy of prepositioning strategies. Since then, preparedness plans have been brought to the forefront of

academic attention. Most studies formulated the prepositioning of relief materials (such as water, food or medical kits) by

means of a two-stage stochastic programming problem ( Ukkusuri and Yushimito, 2008; Rawls and Turnquist, 2010; Kınay

et al., 2018 ), where some unique identities of disasters, such as booming demand ( Jia et al., 2007 ) and uncertain network

conditions ( Özgün Elçi et al., 2018 ), are well-characterized. 

The optimization techniques of regular emergencies and large-scale disasters can be similar in the preparedness phase.

Location, inventory and distribution strategies are the main concerns in both cases. From the perspective of performance

metrics, Gralla et al. (2014) and Yu et al. (2018) stated that efficiency, effectiveness and equity should be considered in the

relief process of large-scale disasters, as reflected in the EMS system. Each of the three metrics corresponds to a concrete

characteristic in the mathematical model. First, Gralla et al. (2014) determined efficiency by calculating the system-wide

economic cost. A large variety of literature employs cost-related objectives ( Rawls and Turnquist, 2010; Noyan, 2012; Chen

and Yu, 2016; Ni et al., 2018 ), and our work does the same. Second, service quality is a measure of system effectiveness.

Some studies minimized unsatisfied demand ( Özdamar et al., 2004 ) or undistributed supplies ( Orgut et al., 2016 ) in the

objective function; others used chance constraints to ensure a satisfactory service level ( Hong et al., 2014; Liu et al., 2016 ).

Our research falls into the latter category. Third, equity means the fairness of victims from different areas. Since the main

aim of disaster management is to provide early response, equity is expressed as a function of distance or response time

in previous research. Kınay et al. (2018) matched the nearest open shelter to vulnerable areas. Yang et al. (2013) studied a

discrete resource allocation problem minimizing the range of waiting time in public services. Similar to Hong et al. (2014) ,

we minimize the transportation costs, which is helpful to reducing response times. Note that cost efficiency is not a major

concern for decision makers in the disaster case compared with regular emergencies. Effectiveness and equity are more

important than cost efficiency. Different objectives, such as demand coverage ( Chanta and Sangsawang, 2012 ), response time

( Bayram et al., 2015 ) and accessibility ( Özgün Elçi et al., 2018 ), can also be considered. 

Two major distinct features of disasters are tremendous demand and low-frequency. The lack of historical data makes de-

mand prediction and disaster prevention much more difficult than daily EMS cases. Thus, in the disaster case, the following

approaches can be considered to construct reliable estimates of random demand. First, we can predict maximum concur-

rent demand based on the unique attributes of different demand sites, such as population density, economic importance,

geographical features and weather patterns ( Jia et al., 2007 ). Second, simulation systems can be introduced to forecast and

prepare data during disasters ( Horner, 2008; Lee et al., 2009 ). Third, artificial intelligence can be applied to forecast short-

term natural disasters ( Hoyos et al., 2015 ). For example, backpropagation artificial neural networks were successfully applied

to forecast typhoon ( Lee, 2008 ) and heavy snow disasters ( Wu et al., 2008 ). Finally, expert opinion can help to create reliable

predicted disaster scenarios and demand data ( Chang et al., 2007; Rawls and Turnquist, 2010 ). 

After obtaining reliable estimates of the random variables and exogenous parameters, distributionally robust optimization

is a perfect data-driven approach to make decisions in emergency management. In practice, the exact distributions of ran-

dom variables are difficult to estimate with limited data; thus, researchers can take advantage of available data to estimate

certain moments and distribution properties. DRO is an intermediate approach between stochastic optimization, which has

no robustness to distribution error, and robust optimization, which ignores the available problem data ( Delage and Ye, 2010 ).

In summary, on account of similar decision variables and performance metrics, our model can be extended to large-scale

disasters only if the ambiguity sets and parameters can be adjusted based on the unique features. To make the model more

practical and reliable, uncertain network conditions, other performance-related objectives and different types of shelters can

be taken into consideration in the disaster case. 

8. Conclusion 

The principal purpose of this research is to support emergency relief planners in developing long-term EMS system de-

signs, including facility locations and stock pre-positioning decisions that enable efficient medical relief responses for daily

demand or large-scale emergencies. To handle the inherent uncertainty in EMS systems, we propose a two-stage stochastic

programming model with joint chance constraints for the design of a reliable EMS network. Then, the model is approx-

imated as a computationally tractable mixed integer conic quadratic program using a distributional robust optimization
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(DRO) method. The benefits of the proposed DRO-based model are illustrated by comparing with three well-known ap-

proaches (the Bonferroni approximation, individual chance constraints and the scenario-based approach). 

Based on the extensive numerical experiments, we find the following remarks: (1) In terms of the performance of dif-

ferent solution approaches, DRM achieves a higher reliability than the individual chance constraints, efficiently avoids the

over-conservative results obtained by the Bonferroni approximation, and thoroughly considered all possible scenarios com- 

pared with the scenario-based approach; (2) When the distributional set of MNCD is small, which implies the estimation of

random variable is accurate enough, individual chance constraints can ensure the system reliability because of its robustness,

however, DRM can achieve the system reliability with a lower cost. (3) The topology network obtained by methodologies

that ensure system reliability (Bon, Ind, Scb) tend to establish more than one facilities to service a single demand site, which

illustrates the flexibility when facing demand uncertainty. 

In future research, highly effective algorithms can be studied to tackle large-scale instances of the parametric SOCP.

It would also be interesting to compare the results of other distributional sets in DRO. Moreover, an integration model

considering other measurements, such as equity and response time, can be studied to generate more valuable management

insights. Furthermore, better approximations on robust EMS location and sizing problems can be developed. 
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Appendix A. Proof of Theorem 4.1 

Proof. From (7) , it is obvious that 

E F [ g(Y , N, θ)] = β(q 

∗) T E F [ �] = min 

X∈ �(Y , N) 
q 

T 
E F [ �] , 

where �( Y , N ) is defined by constraints (8) –(11) . We can obtain, 

sup 

F ∈F 
E F [ g(Y , N, θ)] = β sup 

F ∈F 
min 

X∈ �(Y , N) 
q 

T 
E F [ �] = β max 

F ∈F 
min 

X∈ �(Y , N) 
q 

T 
E F [ �] . (A.1) 

The order of the max-min operation in (A.1) is equivalent to the corresponding min-max representation. For the optimal

solution q ∗, we have 

max 
F ∈F 

min 

X∈ �(Y , N) 
q 

T 
E F [ �] = max 

F ∈F 
(q 

∗) T E F [ �] ≥ min 

E [ �] ∈ �
max 
F ∈F 

(q ) T E F [ �] , 

where � = { x ∈ R 

T : (x − μ) T �−1 (x − μ) ≥ ε2 } ⊆ R 

T + . 
In the second stage, there exists an optimal solution ( X 

∗, q ∗) for g ( Y , N , θ), then 

max 
E [ �] ∈ �

min 

X∈ �(Y , N) 
q 

T 
E F [ �] = max 

E [ �] ∈ �
(q 

∗) T E [ �] , ≥ min 

X∈ �(Y , N) 
max 

E [ �] ∈ �
q 

T 
E F [ �] . 

The first equality holds because q ∗ is the optimal solution for the second stage. Furthermore, since X 

∗ ∈ �( Y , N ), the sec-

ond inequality is straightforward. The other direction holds from the minimax inequality ( Fan, 1972 ). Based on the mean-

covariance information of �, max 
x ∈ �

q T x = ε
√ 

q T �q + μT q , problem P can be reformulated as 

min 

r, q , X , Y , N 
ε
√ 

q 

T �q + μT q + 

∑ 

j∈ J 

{
f j Y j + a j N j 

}
, 

s.t. q i = 

∑ 

j∈ J c i j X i j , ∀ i, 

q ≥ 0 , (4) ∼ (6) , (8) ∼ (11) . 

Thus, Theorem 4.1 is proved by introducing a dummy variable r . �

Appendix B. Proof of Proposition 4.5 

Proof. The robust counterpart (27) implies P 

(
X 

T 
j 
d − N j > 0 

)
= 0 , ∀ j ∈ W \ J . Thus, with λ> 0 we have,

P 

(
X 

T 
j 

d − N j ≤ 0 , ∀ j ∈ W 

)
= P 

{ 
max j∈J 

(
λ j 

[ 
X 

T 
j 

d − N j 

] )
≤ 0 

} 
. Based on Proposition 4.4 , CVaR constraint (10) is the tightest

convex approximation to individual chance constraints. Then, if ( N , X ) are feasible in chance constraint, it is sufficient to

show that � 1 −ε 

[
max 

j∈J 

[ 
λ j 

(
X 

T 
j 

d − N j 

)] ]
≤ 0 . Based on the classical inequality proposed by Meilijson and Nádas (1979) , 

E 

(
max 

i =1 , ··· ,n 
A i − ι

)+ 
≤ E (B − ι) + + 

n ∑ 

i =1 

E (A i − B ) + , for any r.v. B . 
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Let B = w 

T d − w 0 , we obtain 

� 1 −ε 

[
max 

j∈J 

[
λ j 

(
X 

T 
j d − N j 

)]]

= min 

ι

{
ι + 

1 

ε 
E 

[(
max 

j∈J 

[
λ j 

(
X 

T 
j d − N j 

)]
− ι

)+ ]}

≤ min 

ι, w,w 0 

{ 

ι + 

1 

ε 

[ 

E [(w 

T d − w 0 − ι) + ] + 

∑ 

j∈J 
E 

[ (
[ λ j X j − w] T d − λ j N j + w 0 

)+ ] ] } 

≤ min 

ι, w,w 0 

{ 

ι + 

1 

ε 

[ 

π(w 0 + ι, w) + 

∑ 

j∈J 
π(λ j N j − w 0 , λ j X j − w) 

] } 

= min 

w 0 , w 

{ 

min 

ι

[
ι + 

π(w 0 + ι, w) 

ε 

]
+ 

1 

ε 

[ ∑ 

j∈J 
π
(
λ j N j − w 0 , λ j X j − w 

)] } 

= ϒ(N, X , λ, J ) 

Then, if ϒ(N, X, λ, J ) ≤ 0 , � 1 −ε 

[
max 

j∈J 

[ 
λ j 

(
X 

T 
j 

d − N j 

)] ]
≤ 0 holds. Thus, proved. �

Appendix C. Scenario-based approach 

The scenario-based approach characterizes the random variables by a given set of scenarios. We assume that � and d

follow a discrete distribution with finite support. Suppose array ( θ is , d is ) denotes the s th-realization of the expected (daily)

demand and the MNCD occurring at site i under scenario s = 1 , . . . , S . For brevity, we assume that the corresponding prob-

ability of each scenario is equal ( Santoso et al., 2005; Luedtke, 2014 ). 

In light of the non-convexity of joint chance constraints, we introduce big-M constraints (C.3) and (C.4) to replace joint

chance constraint (10) , where z s is a binary variable and M is a large positive number. The scenario-based model with a

min-max objective is formulated in which the worst case over all scenarios can be considered. 

min t + 

∑ 

j∈ J 

{
f j Y j + a j N j 

}
, (C.1)

s.t. t ≥ β
∑ 

i ∈ I 
θis 

∑ 

j∈ J 
c i j X i js , ∀ s ∈ S, (C.2)

∑ 

i ∈ I 
d is X i js − N j ≤ M z s , ∀ j ∈ J, s ∈ S, (C.3)

∑ 

s ∈S 
z s ≤ S(1 − α) , (C.4)

∑ 

j∈ J 
X i js = 1 , ∀ i ∈ I, s ∈ S, (C.5)

X i js ≤ Y j , ∀ i ∈ I, ∀ j ∈ J, s ∈ S, (C.6)

t ≥ 0 , X i js ≥ 0 , ∀ j ∈ J, s ∈ S, (C.7)

z s ∈ { 0 , 1 } , ∀ s ∈ S, (C.8)

(4) , (5) , (6) . 

Constraint (C.2) obtains the maximum cost over all scenarios. Constraints (C.3) together with (C.4) guarantee that the prob-

ability of satisfying demands in all scenarios is larger than 1 − ε: if z jk = 0 , constraint (C.3) is equivalent to �i d ik X ij ≤ N j ; if

z jk = 1 , constraint (C.3) is redundant. 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.trb.2018.11.012 . 

https://doi.org/10.1016/j.trb.2018.11.012
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